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Abstract 

Truly effective dialog and pedagogy in Intelligent Tutoring Systems will 

only be achievable when systems are able to understand the detailed relationships 

between a learner’s answer and the desired conceptual understanding.  This thesis 

describes a new paradigm and framework for recognizing whether a learner’s 

response to an automated tutor’s question entails that they understand the 

concepts being taught.  I illustrate the need for a finer-grained analysis of answers 

than is supported by current tutoring systems and describe a new representation 

for reference answers that addresses these issues, breaking them into detailed 

facets and annotating their relationships to the learner’s answer more precisely.  

Human annotation at this detailed level still results in substantial inter-annotator 

agreement, 86.1%, with a Kappa statistic of 0.728. 

I present current efforts to automatically assess learner answers within this 

new framework, which involves training machine learning classifiers on features 

extracted from dependency parses of the reference answer and the learner’s 

response and features derived from domain-independent lexical statistics.  The 

system’s performance, 75.5 % accuracy within domain and 65.9% out of domain, 

is very encouraging and confirms the approach is feasible.  
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Another significant contribution of this work is that the semantic 

assessment of answers is completely domain-independent.  No prior work in the 

area of tutoring or educational assessment has attempted to build such domain-

independent systems.  They have virtually all required hundreds of examples of 

learner answers for each new question in order to train aspects of their systems or 

to handcraft information extraction templates.
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1 Introduction 

Imagine a time in the future when, in addition to instructor-led group 

interaction in the classroom, children get one-on-one or small group (two or three 

to one) tutoring with a subject matter expert.  At a time when funding for 

education seems to be continually cut, this seems impossible to imagine and 

almost surely never will come to be, at least not with human tutors, but what 

about computers?  Might it be possible for computers to engage students in this 

same form of natural face-to-face conversation?  Might they even be more 

capable of patiently tailoring their interactions to each child’s learning style or 

knowing just the right question to ask at just the right time to maximize learning 

outcomes?  What capabilities must the system possess to carry out this feat?  

While there are many unsolved problems between today and the future these 

questions evoke, this thesis takes steps in the direction of solving one of these 

problems – getting a machine to understand a child’s utterance in the context of a 

tutor’s question. 

Consider the question in example (1a), the desired answer in (2a), and the 

child’s answer shown in (3a). 

(1a) Kate dijo: “Un objeto tiene que moverse para producir sonido.” ¿Estás de 

acuerdo con ella? ¿Por qué sí o por qué no? 

(2a) De acuerdo. Las vibraciones son movimientos y las vibraciones producen 

sonido.  

(3a) Sí, porque los sonidos vibran, chocan con el objeto y se mueve.  
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What is required for the computer to understand the relationship between 

the student’s answer and the reference answer?  The relationship seems obvious to 

us, well, at least if we understand the language, but what would we do if, like the 

computer, we were not fluent in the language?  One approach utilized by many is 

to examine the lexical similarity between the answers.  We might recognize in this 

case that the student used other derivational forms of nearly all of the right words 

and hence, assume that they answered the question correctly.  Unfortunately, the 

problem is not that easy.  In fact, in this case, the student got the cause and effect 

completely backwards, as can be seen in the original English versions (1b), (2b) 

and (3b).  The student was on topic, used virtually all the right words, but clearly 

does not understand the concepts involved.  It is critical that the computer be able 

to assess the interplay and relations between the words.   

(1b) Kate said: “An object has to move to produce sound.” Do you agree with 

her? Why or why not? 

(2b) Agree. Vibrations are movements and vibrations produce sound. 

(3b) Yes, because sounds vibrate and hit the object and it moves. 

The overarching thesis of this work is that a more detailed assessment of 

learners’ dialog contributions will enable tutoring strategies that will significantly 

improve learner comprehension.  The thesis that this work more directly addresses 

is that, with the use of fully automated systems, learner contributions can be 

classified at a level assumed to be appropriate for achieving the above goal and 

that this assessment can be performed in a domain-independent manner.  Such a 

level of analysis would have to meet the following criteria: 
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• It must utilize a level of representation that facilitates a detailed 

assessment of the learner’s understanding, indicating exactly where 

and in what manner the answer did not meet expectations. 

• The representation and assessment must be learnable by an 

automated system – they must not require the handcrafting of 

domain-specific logic representations, parsers, knowledge-based 

ontologies, or dialog management rules. 

This thesis presents just such a paradigm shift with a new framework for 

assessing learner responses to tutor questions.  I break the reference answer down 

into very low-level compositional facets and annotate their relationships to the 

student’s answer more precisely than has been done in prior work.  I describe an 

initial approach to automatically assess answers within this framework with the 

long term goal of improving the state of intelligent tutoring systems to the point 

where they are comparable to or can even outperform human tutors, as measured 

by increases in the associated student learning gains.  In order to achieve this 

long-term goal I believe the tutor must be capable of natural, engaging, domain-

independent dialog.   

Another significant contribution of this work is that the semantic 

assessment of answers is domain-independent – the system does not need to be 

retrained for new questions or even new subject areas.  No prior work in the area 

of tutoring systems or answer verification has attempted to build such question-

independent systems.  They have virtually all required hundreds of examples of 

learner answers for each new question in order to train aspects of their systems or 
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to handcraft information extraction templates.  Because comprehension problems 

often take root in elementary school during the early years of learning to read and 

comprehend texts, this thesis focuses on those critical grades.  To my knowledge, 

this is the first work to show success in assessing elementary students’ roughly 

sentence-length responses to comprehension questions. 

I begin with a brief motivation for why intelligent tutoring systems (ITSs) 

are an important component of future educational settings.  Then I describe early, 

more conventional approaches to assess students’ conceptual understanding in 

automated tutoring systems along with their shortcomings.  I describe the 

progression of strategies and discuss how they improved over earlier efforts and 

indicate where they still have room for improvement.  Technological approaches 

to large-scale assessment are then reviewed and contrasted with automated 

tutoring technology.  I also describe the relevance of some current active areas of 

natural language processing research such as paraphrase recognition and textual 

entailment.  I then detail my semantic analysis framework, the generation of a 

gold standard annotated corpus within this framework, and my current efforts to 

achieve more robust assessment of understanding by applying machine learning to 

detect the relationships between phrases that entail an understanding of a tutored 

concept and those that do not. 
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2 Why are Intelligent Tutoring Systems Important? 

Improving reading comprehension is a national priority, particularly in the 

area of science education.  In 1999, the RAND Reading Study Group (Snow 

2002), which was commissioned by the Department of Education to develop a 

national agenda for reading research, concluded that “Understanding how to 

improve reading comprehension outcomes, not just for students who are failing in 

the later grades but for all students who are facing increasing academic 

challenges, should be the primary motivating factor in any future literacy research 

agenda.”   

Recent estimates suggest that over one third of fourth grade readers and 

27% of 8th grade readers cannot extract the general meaning nor even make 

simple inferences from grade-level text (National Assessment of Educational 

Progress, NAEP 2007); the most recent results for 12th grade readers suggest that 

27% of them also fall within this category (NAEP 2005).  While many students 

may appear to learn to read and understand text by third grade, evidence shows 

that their apparent competence is often an illusion – as texts become more 

challenging in fourth grade, many students cannot read nor understand them 

(Meichenbaum and Biemiller 1998; Sweet and Snow 2003). There is thus a 

critical need for programs that engage beginning readers in a way that supports 

comprehension.   

The lack of sufficient comprehension of texts is a significant contributing 

factor to poor learning outcomes in science (Gomez et al. in press), leading to the 

current state of U.S. science literacy: “Current levels of mathematics and science 
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achievement at the elementary and secondary levels suggest that the United States 

is neither preparing the general population with levels of mathematics and science 

knowledge necessary for the 21st century workplace, nor producing an adequate 

pipeline to meet national needs for domestic scientists” (The Institute of 

Educational Sciences 2006).  In the most recent National Assessment of 

Educational Progress in science (NAEP 2005), only three percent of U.S. students 

attained advanced levels of science achievement in Grades 4 and 8, with even 

fewer reaching advanced levels in Grade 12.  Many U.S. students are not even 

attaining mastery of rudimentary science knowledge and skills.  In the 2005 

NAEP, 32 percent of Grade 4 students, 41 percent of Grade 8 students, and 46 

percent of Grade 12 students scored below the Basic level in science.  At Grade 4, 

students performing below the basic level cannot read simple graphs.  At Grade 

12, students performing below the basic level are likely to miss problems such as 

drawing a simple diagram of the solar system.  Only 29 percent (corrected for 

chance) of all Grade 4 students recognized that the moon’s craters are the result of 

meteoroid impacts versus eruptions of active volcanoes, shifting rock 

(moonquakes), or tidal forces caused by the Earth and Sun.  Only 62 percent were 

able to recognize and explain why, when dropped in identical glasses of water, the 

significantly larger steel ball in the problem’s drawing would cause a greater rise 

in the water level.   

How do we tailor instruction to accommodate differing learners’ needs 

and address these comprehension deficits?  Comprehension of text can be 

facilitated by reading texts to kids and then interacting with them in various ways 
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to promote thinking and learning (e.g., Beck and McKeown 2001; Chi 1996; 

VanLehn et al. 2003).  One of the long term goals associated with this work is to 

develop an intelligent tutoring system that both facilitates the comprehension of a 

given text and teaches students to consider critical questions and thus form a 

deeper understanding when reading future texts.   

Since accommodating differing learner needs through tailored instruction 

is at the core of the project’s long term goals, the mode of teaching and learning 

on which this thesis is based is one-on-one dialog, the kind of instruction that 

Benjamin Bloom observed so greatly impacts learning and cognition.  In 1984, 

Bloom determined that the difference between the amount and quality of learning 

for a class of thirty students and those who received individualized tutoring was 2 

standard deviations.  The significant differences in proficiency between those 

children who enjoy one-on-one tutoring versus those who have little or no 

individualized support is testament to the need for further exploration of the 

individualized tutoring model (Bloom 1984; Torgesen, Wagner and Rashotte 

1999). 

In the two decades since Bloom reported a two sigma advantage of one-

on-one tutoring over classroom instruction across several subjects, evidence that 

tutoring works has been obtained from dozens of well designed research studies, 

meta-analyses of research studies (e.g., Cohen, Kulik and Kulik 1982) and 

positive outcomes obtained in large scale tutoring programs in Britain (e.g., 

Topping and Whitley 1990) and the U.S. (Madden and Slavin 1989). Effective 

intelligent tutoring systems that produce learning gains with high school, college, 
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and adult subjects through text-based dialog interaction exist in the laboratory 

(e.g., Graesser et al. 2001; Peters et al. 2004; VanLehn et al. 2005), some 

demonstrating up to a one sigma gain relative to classroom instruction (Anderson 

et al. 1995; Koedinger et al. 1997).  Therefore, intelligent tutoring systems show 

promise in approaching the effectiveness of human tutoring and systems that are 

accessible, inexpensive, scalable and above all effective would provide one 

critical component of an overall educational solution. 

From a cost-benefit perspective, computers and associated learning 

software have the potential to provide a relatively inexpensive solution in today’s 

education system.  

The cost of training and employing additional teachers to provide the level 

of individualized attention that many students need is prohibitively expensive, 

whereas interactive computer systems that use advanced human communication 

and interface technologies to provide individualized tutoring could inexpensively 

provide focused, individualized, adaptive, scientifically-based instruction.  In 

short, advances in computing technologies, communications, and language 

technologies combined with advances in cognitive science and the science of 

reading and learning, provide a powerful and timely potential solution to our 

nation’s education crises. 
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3 Prior Work on Intelligent Tutoring Systems 

Early automated tutors largely followed conventional computing 

approaches, for example, utilizing multiple choice questions.  Current research 

shows that, if properly designed, multiple choice questions can be a very effective 

tool for assessing comprehension.  However, one of the most successful means of 

improving learning gains is to force students to articulate their beliefs, leading 

them to a better understanding of what they do and do not know and strengthening 

the causal relations between the bits of knowledge they have acquired (Chi 1996; 

VanLehn et al. 2003).  Therefore, much research has moved away from multiple 

choice questions and toward free response questions, requiring students to express 

their deeper understanding of the concepts in the text. 

The first most obvious step in this direction was the use of scripted, 

domain-specific dialog techniques, often implemented utilizing Finite State 

Machines (FSM).  For example, SCoT, a Spoken Conversational Tutor (Peters et 

al. 2004), uses activity recipes to specify what information is available to the 

recipe, which parts of the information state are used in determining how to 

execute the recipe, and how to decompose an activity into other activities and 

low-level actions.  The Phoenix semantic parser (Ward 1991) defines semantic 

frames which include patterns to be matched and extracted from the dialog.  The 

dialog is then driven by what frame elements have not yet been addressed and the 

specific system turns attached to those frame elements.  The advantage of this 
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technology lies in its precision1 – it is generally very accurate in the classification 

of relevant text fragments, but this is typically at the cost of poorer performance 

on recall2 – finding all of the relevant information nuggets.   

We conducted a pilot experiment to determine how well an automatic 

system based on domain-specific shallow semantic parsing (the process of 

recognizing predicate-argument structure or semantic relationships in text) via the 

Phoenix parser could grade young children’s summaries of stories.  We collected 

spoken summaries of a single story, “Racer the Dog”, from 22 third and fourth 

grade students.  We divided the summaries into a training set consisting of fifteen 

summaries and a test set of seven summaries.  Multiple researchers generated 

reference summaries, which we distilled to consist of the key points that should 

exist in a good summary of the story.  We utilized the Phoenix semantic parser to 

map summaries to semantic frames (see Fig. 1 and Fig. 2 for examples).3  We first 

wrote an initial parser grammar that could extract the points in the reference 

summary and then utilized the fifteen training summaries to expand the coverage 

of the grammar.  The seven summaries comprising the test set were not examined 

during system development.  After system development, we manually parsed the 

                                                

1 Precision is calculated as the fraction of classifications that are correct 
out of all of the text fragments the system classified as falling within one of the 
categories of interest. 

2 Recall is the fraction of classifications that are correct out of all of the 
text fragments that should have been classified as falling within one of the 
categories of interest according to the human gold standard annotation. 

3 Anaphoric reference was resolved manually in a preprocessing step. 
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test set to create gold standard reference parses for evaluation purposes.  The 

manual parse identified a total of 36 points that addressed content from the 

reference summaries.  Compared to this gold standard, automatic parses of the test 

set had a recall of 97% (35/36) and a precision of 100% (35/35) – the parser found 

all but one of the relevant points and produced no erroneous ones.  (In order to 

consider a parse correct, the concept from the child’s summary had to have the 

same semantic roles as one in the reference summary and the roles had to be filled 

by references to the same entities.) 

Racer had problems with his back legs. 

LegProblems:[Problems_agent].[Dog_Name].racer 

Fang always bit Racer and ran away faster than Racer could run. 

Bother:[Bother_agent].[Dog_Name].fang 

Bother:[Bother_theme].[Dog_Name].racer 

Faster:[Run_Away_agent].[Dog_Name].fang 

Faster:[Run_Away_theme].[Dog_Name].racer 

Fig. 1. Example Phoenix parse for a reference summary 

um racer got his leg hurt 

LegProblems:[Problems_agent].[Dog_Name].racer 

fang kept on teasing racer 

Bother:[Bother_agent].[Dog_Name].fang 

Bother:[Bother_theme].[Dog_Name].racer 

Fig. 2. Example Phoenix parse of a child’s summary 
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The preceding results are for human transcriptions of the children’s 

spoken summaries.  We also decoded the speech files with the University of 

Colorado SONIC speech recognition system (Pellom 2001; Pellom and Hacioglu 

2003) and processed the SONIC output.  For the same test set, the recall was 83% 

(30/36) and the precision was 100% (30/30) – speech recognition errors resulted 

in missing an additional five points that were extracted from the human 

transcribed summaries, but generated no erroneous points.  As expected by such 

systems, the precision was quite high, while the recall was slightly less so.   

A significant disadvantage of these more conventional systems is that they 

require a considerable investment in labor to cope with a new subject area or even 

to handle a small change in subject matter coverage.  This effort is required to 

generate new handcrafted parsers, knowledge-based ontologies, and dialog 

control mechanisms.  In this regard, the use of Latent Semantic Analysis (LSA), a 

statistical soft computing technique, to assess student’s summaries represents an 

improvement over FSM dialogs, in that the system is more flexible in handling 

the unconstrained responses of a learner (Landauer and Dumais 1997; Landauer, 

Foltz and Laham 1998).  LSA begins with a term by document matrix, where the 

cells in the matrix indicate the number of occurrences of the given term in the 

associated document.  This matrix is given a TF-IDF (term frequency – inverse 

document frequency) weighting to account for the relative importance of a term in 

the document adjusted for its significance across all documents.  LSA then 

utilizes singular value decomposition and retains only the top k (usually around 

300) dimensions to represent the key information in the original matrix.  This 
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process effectively smoothes the data and brings out the latent semantics in the 

original document set – providing connections between terms and documents that 

were not explicit in the source text.  The resulting rank-k approximation of the 

original matrix is then used to determine the similarity of terms and documents by 

calculating the dot product or cosine with related vectors. 

The Institute of Cognitive Science (ICS) and The Center for Spoken 

Language Research (CSLR), both at the University of Colorado, Boulder, have 

worked with the Colorado Literacy Tutor program to develop educational 

software that helps children learn to read and comprehend text (Cole et al. 2003; 

Franzke et al. 2005).  A significant part of this program is Summary Street, a tool 

for improving and training text comprehension through summarization.  Summary 

Street utilizes LSA to grade children’s text summaries and provide feedback on 

the quality of the summary, including completeness, relevance and redundancy.  

Summary Street’s feedback has been shown to improve student scores by, on 

average, a letter grade with much more improvement for lower performing 

students. 

AutoTutor (Mathews et al. 2003) is an interactive text-based tutor that 

utilizes LSA to engage college students in dialogs regarding conceptual physics 

and introductory computer science.  Because AutoTutor is based on LSA, it is 

more flexible in handling the unconstrained responses of a learner than are tutors 

based on FSM dialogs.  The AutoTutor architecture requires the lesson planner or 

system designer to provide the following information: 
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1. A statement of the problem to be solved, in the form of a question.   

2. A set of expectations in an ideal answer, with each expectation being a 

sentence in natural language of 10-20 words   

3. A set of tutor dialog moves that express or elicit from the learner each 

expectation in #2 (i.e., hints, prompts, and assertions)   

4. A set of anticipated bad answers and corrections for those bad answers   

5. A set of [subject matter] misconceptions and corrections to those 

misconceptions   

6. A set of basic noun-like concepts about [the subject matter] and their 

functional synonyms in the specific context of the problem.   

7. A summary of the answer or solution  

8. A latent semantic analysis (LSA) vector for each expectation, bad answer, 

and misconception. 

(Mathews et al. 2003) 

The key advantage of their architecture is that it does not require a 

syntactic match between the learner’s dialog turn and the expectation in the ideal 

answer; nor does it require key phrase spotting.  The LSA component analyzes the 

semantic similarity between the user’s open-ended dialog turn and the system’s 

expectation or reference answer by comparing vector representations derived 

from a bag-of-words method – a method which ignores the expressed relations 

between words.  The dialog is then driven by checking the degree to which each 

expectation has been covered by the sum total of all past user turns for the 

problem.  The given answer expectation and the compilation of user turns are 

each represented as pseudo-documents, weighted averages of the reduced-

dimensionality vectors associated with the words they contain.  The answer is 

then assessed by computing the cosine between the vectors representing the two 
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pseudo-documents.  If the metric exceeds a threshold, the user’s turns are 

assumed to have the same meaning as the answer expectation.   

However, the reality is that, while LSA’s evaluations are closely 

correlated with human evaluations, LSA completely disregards syntax in its 

analysis and is prone to many related weaknesses.  In example (3) above, (sounds 

vibrate and hit the object and it moves), the student used all the right key words, 

so LSA would be satisfied despite the fact that the student has the causal relation 

reversed.  LSA does a poor job of detecting misconceptions (Mathews et al. 

2003); it seems likely that this might be due to the relatedness between the bag of 

words in the misconception’s description and the bag of words in the expected 

answer to the question.  LSA also performs very poorly on the short answers that 

are typical in tutoring settings.  This is the reason that AutoTutor must combine 

the input from all prior user turns into one cumulative bag of words, rather than 

compare strictly with the learner’s current response.  Furthermore, and key to this 

thesis, it is not possible with typical LSA-based approaches to perform a detailed 

assessment of a learner’s contribution or to identify the specific reasons that a 

short answer might not be correct.  Consequently, typical LSA approaches 

provide little help in classifying learner contributions and determining the best 

tutor response or dialog strategy to correct misconceptions.  An additional goal of 

the work presented here is to develop a system that does not need to be retrained 

for each new question or subject area.   

While the LSA-based approaches are not typically trained for individual 

questions, they do generally require a fair amount of corpus tuning to ensure 



  16 

adequate coverage of the topic area and the cosine threshold to judge similarity is 

always tuned to the domain or question.  As noted above, AutoTutor also requires 

“a set of basic noun-like concepts about [the subject matter] and their functional 

synonyms in the specific context of the problem” (Mathews et al. 2003).  Lastly, 

there is no evidence that LSA is an effective tool for interacting with young 

children in the K-6 grade range.  In preliminary investigations using story 

summaries written by third and fourth graders, we found that LSA was unable to 

appropriately assess the quality of these children’s summary-length responses.  

This is further confirmed by LSA’s poor performance in grading elementary 

students’ constructed responses to short answer questions in experiments by the 

creators of AutoTutor (Graesser, personal communication). 

Rosé et al. (2003a) and Jordan, Makatchev and VanLehn (2004) have 

improved on the accuracy of the LSA-based approach to verifying short answers 

in tutorial dialogs by incorporating a deep syntactic analysis into their evaluation 

and integrating multiple assessment technologies.  A decision tree is used to learn 

from the output of a Naïve Bayes classifier and from deep syntactic parse 

features.4 

The system classifies each student sentence to determine which, if any, of 

the set of good answer aspects it matches.  This is one of the very few systems for 

assessing open-ended short answers that provides any finer-grained measure of 

performance than a simple answer grade; they evaluate the system using 
                                                

4 Their deep parse includes information beyond a typical syntactic parse 
(e.g., mood, tense, negation, etc.) 
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precision, recall, and F-scores on the task of detecting the good answer aspects in 

the student responses.  They compare their combined technique, CarmelTC, to 

LSA as a baseline, as well as to the Naïve Bayes classifier without the syntactic 

parse features, and a classifier based only on the syntactic features without the 

Naïve Bayes output.  The results, as seen in Table 1, show that the combined 

approach performed much better than LSA or either of the individual systems. 

Method Precision Recall F 

LSA 93% 54% 0.70 

Naïve Bayes 81% 73% 0.77 

Symbolic-only 88% 72% 0.79 

CarmelTC 90% 80% 0.85 

Table 1. Evaluation of CarmelTC 

Though CarmelTC does provide slightly more information than a simple 

grading system, it does not provide the sort of fine-grained assessment of a 

learner’s contribution necessary to understand their mental model and drive high-

quality tutoring dialog.  Furthermore, much of the parsing in their system is 

dependent on domain-specific, hand-coded rules, in order to capture the semantics 

of the domain lexicon and language.  While they are building tools to ease this 

process (Rosé et al. 2003b), there appears to be a long way to go before a lesson 

planner, with no formal linguistics or computer science background, would see a 

positive cost-benefit analysis in utilizing these tools to build lessons, especially on 

a regular basis.  For example, to handle a new question the user must generate 

first order propositional representations of each good answer aspect and hand-
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annotate example learner answers as to their semantic interpretation within those 

representations.   

Perhaps more important than the time-consuming nature of this process, it 

defeats one of the ultimate goals of an Intelligent Tutoring System (ITS), namely 

to be able to interact naturally without being constrained to communication within 

the realm of a fixed set of question-answer pairs.  Finally, the methods described 

by Rosé and Jordan require that classifiers be trained for each possible proposition 

associated with the reference answers.  This not only requires additional effort 

(currently on the part of the systems builders) to train the system, but it also 

requires the collection and grading of a large corpus of learner responses to each 

question that the tutor might ask; again defeating the ultimate goal of natural 

dynamic tutoring interactions.   

Makatchev, Jordan and VanLehn (2004) develop an abductive theorem 

prover with the shared long-term goal of providing more specific, higher quality 

feedback to learners.  However, their approach is domain dependent, requiring 

extensive knowledge engineering for each new qualitative physics problem to be 

solved; their reasoning engine has 105 domain rules that handle seven specific 

physics problems.  

Recall and precision vary by proof cost; at a proof cost of 0.6, recall and 

precision are approximately 0.38 and 0.25, respectively, where at a proof cost of 

0.2, they are around 0.63 and 0.15, leading to F-measures of about 0.30 and 0.24 

respectively.  In initial analyses, their system did not statistically improve learning 

outcomes above those achieved by having the students simply read the text.  They 
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also indicate that the system performed poorly at correctly identifying 

misconceptions in the student essays.   

Many other ITS researchers are also striving to provide more refined 

learner feedback (e.g., Aleven, Popescu, and Koedinger 2001; Peters et al. 2004; 

Pon-Barry et al. 2004; Roll et al. 2005).  However, they too are developing very 

domain-dependent approaches, requiring a significant investment in handcrafted 

logic representations, parsers, knowledge-based ontologies, and dialog control 

mechanisms.  Simply put, these domain-dependent techniques will not scale to the 

task of developing general purpose Intelligent Tutoring Systems and will never 

enable the long-term goal of effective unconstrained interaction with learners or 

the pedagogy that requires it. 
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4 Related Research 

4.1 Short Constructed-Response Scoring 

There is a small, but growing, body of research in the area of scoring free-

text responses to short answer questions (e.g., Boonthum 2004; Callear, Jerrams-

Smith and Soh 2001; Leacock 2004; Leacock and Chodorow 2003; Mitchell et al. 

2002; Mitchell, Aldridge and Broomhead 2003; Pulman 2005; Sukkarieh, Pulman 

and Raikes 2003; Sukkarieh and Pulman 2005).  Shaw (2004) and Whittington 

(1999) provide reviews of some of these approaches.  Most of the systems that 

have been implemented and tested are based on Information Extraction (IE) 

techniques (Cowie and Lehnert 1996).  They handcraft a large number of pattern 

rules, directed at detecting the key aspects of correct answers or common 

incorrect answers.  When used for high school and college age students, the 

results of these approaches range from about 84% accuracy up to nearly 100%.  

However, the implemented systems are nearly all written by private companies 

that keep much of the nature of the questions and systems proprietary and the best 

results seem to frequently be achieved by tuning with the test data.  Still, these 

results provide good evidence that answers can be accurately assessed, at least at 

the coarse-grained level of assigning a score to high school and college level 

students’ answers. 

Work in this area is typified by c-rater (Leacock and Chodorow 2003; 

Leacock 2004), which was designed for large-scale tests administered by the 

Educational Testing Service (ETS).  A user examines 100 example student 
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answers and manually extracts the common syntactic variants of the answer (200 

or more examples are used for problematic questions that have more syntactic 

variation or fewer correct answers in the dataset, etc).  They build a model for 

each syntactic variant and specify which aspects of the subject-verb-object 

structure are required to give credit for the answer.  For each of the subject, verb, 

and object, the model authoring tool provides the user with a list of potential 

synonyms and they select those synonyms that are appropriate within the given 

context.  The list of synonyms is extracted via the information theoretic similarity 

metrics described in Lin (1998).  Lin’s similarity metric computes the mutual 

information between words that are connected via syntactic dependencies and 

then uses this to calculate the similarity between any pair of words based on the 

ratio of information in the dependencies the two words have in common to the 

sum of information in all dependencies involving either word.  The more 

dependencies two words have in common, the closer this ratio is to 1.0.  Given the 

list of similar words, the user of c-rater then selects those synonyms that are 

appropriate within the given context.   

During the process of scoring a student’s answer, the verb lemma is 

automatically determined and it must match a lemma in one of the model 

answers; the system also resolves pronouns and attempts to correct non-word 

misspellings.  Scoring consists of assigning a value of 0 (no credit), 1 (partial 

credit), or 2 (full credit).  In a large-scale reading comprehension exam 

administered across Indiana (16,625 students), c-rater achieved an 84% accuracy 
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as measured relative to the scores of human judges on a random sample of 100 

answers for each of the seven questions that they were able to score using c-rater.   

In general, short constructed-response scoring systems are designed for 

large scale assessment tasks, such as those associated with the tests administered 

by ETS.  Therefore, they are not designed with the goal of accommodating 

dynamically generated, previously unseen questions.  Similarly, these systems do 

not provide feedback regarding the specific aspects of answers that are correct or 

incorrect; they merely provide a raw score for each question.  As with the related 

work directed specifically at ITSs, these approaches all require in the range of 

100-500 example student answers for each planned test question to assist in the 

creation of IE patterns or to train a machine learning algorithm used within some 

component of their solution. 

4.2 Paraphrasing and Entailment 

In recent years, there has been a tremendous increase in interest in the 

areas of paraphrase acquisition and textual entailment recognition or proof.  These 

technologies have broad applications in numerous areas and great relevance to 

this work.  Paraphrasing is the most common means for a learner to express a 

correct answer in an alternative form; in fact, Burger and Ferro (2005) note that 

even in the Pascal Recognizing Textual Entailment (RTE) challenge (Dagan, 

Glickman and Magnini 2005), 94% of the development corpus consisted of 

paraphrases, rather than true entailments. 
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The target of a fair amount of the work on paraphrasing is in acquiring 

paraphrases to be used in information extraction or closely related factoid 

question answering (Agichtein and Gravano 2000; Duclaye, Yvon and Collin 

2002; Ravichandran and Hovy 2002; Shinyama and Sekine 2003; Shinyama et al. 

2002; Sudo, Sekine and Grishman 2001) and assumes there are several common 

ways of expressing the same information, (e.g., when and where someone was 

born).  For example, Agichtein and Gravano (2000) use a bootstrapping approach 

to automatically learn paraphrase patterns from text, given just five seed examples 

of the desired relation.  The technique does not identify general patterns, just 

those associated with the relation in the seeds.  Beginning with the seed examples 

they extract patterns in the form of a five-tuple <left-context, entity-A, middle-

context, entity-B, right-context>, where the contexts are represented in a soft form 

as weighted vectors that disregard word order.  The terms in each context are 

weighted according to their frequency across the seeds.  These patterns are used to 

find additional entity pairs assumed to have the same relation, which are then used 

as seed examples to find additional patterns and the process repeats.  They 

achieved almost 80% recall and 85% precision in the task of extracting 

headquarters’ locations for organizations.  This could be applied to answer 

assessment, if you can automatically identify the “entities” in an answer using 

Named Entity (NE) recognizers, then via a similar technique you can determine 

whether the two encompassing contexts are essentially paraphrases.  Since fact-

based questions are also somewhat common in testing environments, these 

paraphrase extraction techniques could be useful in tutoring systems.  However, I 
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am more interested in questions that promote deeper reasoning than simple fact 

recollection, and these techniques, at minimum, will require significant 

modifications. 

Much of the remaining research on paraphrase acquisition presupposes 

parallel corpora (e.g., Barzilay and McKeown 2001; Pang, Knight and Marcu 

2003) or comparable corpora known to cover the same news topics (e.g., Barzilay 

and Lee 2003; Dolan, Quirk and Brockett 2004).  The parallel corpora are aligned 

at the sentence level, with sentence pairs considered to be paraphrases.  From 

these alignments, Barzilay and McKeown extract patterns for valid lexical or 

short phrasal paraphrases.  They use a machine learning algorithm that is a variant 

of Co-Training based on (a) context features and (b) lexical and POS features.  

First, they initialize the seed set of paraphrases to match identical word sequences 

in aligned sentences, then they iteratively find contexts based on the paraphrases 

and paraphrases based on the contexts, until no new paraphrases are found or a 

specified number of iterations passes.  They found 25 morpho-syntactic rules and 

9,483 paraphrases, of which about 29% were multi-word phrases.  Judges found 

the paraphrases (with context provided) to be valid about 91.6% of the time.  Only 

around 35% of the lexical paraphrases extracted by these techniques were 

synonyms; the remaining were 32% hypernyms, 18% siblings of a hypernym, 5% 

from other WordNet relations, and 10% were not related in WordNet, 

illuminating the need for softer assessment in tutoring systems versus requiring 

strict synonyms. 
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Pang, Knight and Marcu assess syntactic constituency trees to generate 

Finite State Automata that represent paraphrases.  Barzilay and Lee also generate 

word lattices, but from a single corpus by combining the surface forms of several 

similarly written sentences about distinct events.  These lattices form a database 

of potential paraphrasing techniques or transformations where the areas of high 

variability represent the event arguments (e.g., the actors, location, etc.).  They 

then cluster sentences written on the same day in different articles to decide which 

are paraphrases and use the lattice associated with one sentence to generate 

paraphrases for another sentence in the same cluster – probabilistically, any path 

through the lattice, with appropriate entity substitution, is considered a 

paraphrase.  Other techniques exist for lexical paraphrase acquisition, which do 

not rely on parallel corpora (e.g., Glickman and Dagan 2003).  The use of patterns 

extracted a priori by these systems to verify a paraphrase between the learner’s 

answer and the reference answer in a tutoring environment is unlikely to be of 

much benefit, since they are not broad coverage patterns, but rather are specific to 

high frequency news topics.  However, these algorithms could be modified to 

perform online paraphrase recognition. 

Research in the area of entailment also has much to offer.  Lin and Pantel 

(2001a, 2001b) extract inference rules from text by looking for dependency parse 

patterns that share common argument fillers according to pointwise mutual 

information (Church and Hanks 1989).  This work stimulated much of the later 

work in paraphrasing and entailment.  The main idea is to find patterns in text that 

share similar key content words, where these content words fill slot values at each 



  26 

end of the pattern.  The patterns are extracted from paths in a syntactic 

dependency parse tree and the similarity of patterns is determined by the 

pointwise mutual information (PMI) computed for the patterns’ slots.  PMI for a 

pair of slots indicates whether the sets of words that fill the two slots are more 

similar than would be expected by chance.  This same technique could be applied 

to determine whether a child’s answer to a question is a paraphrase of the 

reference answer. 

Again the difficulty in directly applying this work to the task of answer 

assessment is that the inference rules extracted do not tend to have broad 

coverage.  This is evidenced by the fact that several researchers participating in 

the First Pascal RTE challenge made use of Lin and Pantel’s patterns or a variant 

of their algorithm and still performed quite poorly, barely exceeding chance on 

any but the easiest task, the comparable documents task, (Braz et al. 2005; 

Haghighi, Ng and Manning 2005; Herrera, Peñas and Verdejo 2005; Raina et al. 

2005). 

The RTE challenge has brought the issue of textual entailment before a 

broad community of researchers in a task-independent fashion. The challenge 

requires systems to make binary yes-no judgments as to whether a human reading 

a text t of one or more full sentences would typically consider a second, 

hypothesis, text h (usually one shorter sentence) to most likely be true.  Fig. 3 

shows a typical t-h pair from the RTE challenge.  In this example, the entailment 

decision is no – and that is similarly the extent to which training data is annotated.  

There is no indication of whether some facets of, the potentially quite long, h are 
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addressed in t (as they are in this case) or conversely, which facets are not 

discussed or are explicitly contradicted. 

t: At an international disaster conference in Kobe, Japan, the U.N. 

humanitarian chief said the United Nations should take the lead in 

creating a tsunami early-warning system in the Indian Ocean. 

h: Nations affected by the Asian tsunami disaster have agreed the 

UN should begin work on an early warning system in the Indian 

Ocean. 

Fig. 3. Example text hypothesis pair from the RTE challenge 

However, in the third RTE challenge, there was an optional pilot task that 

begins to address some of these issues.  Specifically, they have extended the task 

by including an Unknown label, where h is neither entailed nor contradicted, and 

have requested justification for decisions.  The form that these justifications take 

is left up to the groups participating, but could conceivably provide some of the 

information about which specific facets of the hypothesis are entailed, 

contradicted and unaddressed. 

Submitters to the RTE challenge take a variety of approaches including 

purely lexical similarity approaches (e.g., Glickman, Dagan and Koppel 2005), 

lexical-syntactic feature similarity (e.g., Nielsen, Ward and Martin 2006), 

syntactic/description logic subsumption (e.g., Braz et al. 2006), graph matching 

with semantic roles (e.g., Haghighi, Ng and Manning 2005), logical inference 

(e.g., Tatu and Moldovan 2007), discourse commitment – assertion, 
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presupposition, and conversational implicature – strategies (Hickl and Bensley 

2007), and numerous other approaches, most based on machine learning.  Many 

of these systems make use of the lexical similarity metrics discussed earlier in this 

chapter, or lexical relations described more formally in WordNet, or more 

formally still in most of the logical inference or abductive reasoning systems.   

The best performing systems in the RTE challenge have been the Hickl et 

al. (2006, 2007) approaches.  In their 2006 entry, they perform a lexical alignment 

and then generate four Boolean semantic role features indicating roughly whether 

the predicates have the same semantic roles and are aligned similarly.  Their 

lexical alignment features include cosine similarity, word co-occurrence statistics, 

WordNet similarity metrics, NE and POS similarity, and string-based similarity.  

They consider arguments to probabilistically match if the hypothesis’ argument 

head is lexically aligned with (entailed by) something in the corresponding text’s 

argument.  A second set of features includes simpler lexical alignment 

information based on the longest common substring, the number of unaligned 

chunks and web-based lexical co-occurrence statistics.  A third set of features 

indicates whether the polarity of the two text fragments is consistent.  Their final 

set of features indicates whether the two text fragments would be grouped 

together when running a text clustering algorithm on a set of documents retrieved 

from a query on their keywords.  Using a decision tree classifier, Hickl et al. 

achieved the best results at the second RTE challenge, with an accuracy of 75.4%.  

Hickl and Bensley (2007) extended this approach at RTE3, extracting the authors’ 

discourse commitments from each text fragment and basing their entailment 
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strategy on these.  Each sentence from the text was elaborated into a potentially 

very long list of propositions determined to be true based on the original 

statement’s assertions, presuppositions, and conversational implicatures.  These 

commitments were then used in a system based on their RTE2 submission to 

achieve an accuracy of 80%. 

In the following chapters, I build on many of the techniques described in 

this and preceding chapters, and more importantly to my cause, I develop a more 

expressive representation framework for recognizing entailment in automated 

tutoring systems that will lead to more effective dialog and improved learning. 
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5 Research Overview 

Imagine that you are an elementary school science tutor and that rather 

than having access to the student’s full response to your questions, you are simply 

given the information that their answer was correct or incorrect, a yes or no 

entailment decision.  Assuming the student’s answer was not correct, what 

question do you ask next?  What follow up question or action is most likely to 

lead to better understanding on the part of the child?  Clearly, this is a far from 

ideal scenario, but it is roughly the situation within which many Intelligent 

Tutoring Systems exist today. 

The overarching thesis of this work is that a more detailed assessment of 

learners’ dialog contributions will enable tutoring strategies that will significantly 

improve learner comprehension.  The thesis that this work more directly addresses 

is that, with the use of fully automated systems, learner contributions can be 

classified at a level assumed to be appropriate for achieving the above goal of 

improving learner comprehension and that this assessment can be performed in a 

domain-independent manner.  Such a level of analysis would have to meet the 

following criteria: 

• It must utilize an intermediate level of representation for the 

reference and learner answers that goes beyond the bag-of-words 

approach in order to account for the semantic relationships among 

concepts and that also goes beyond sentence-level analysis in order 

to provide a more detailed assessment of the learner’s 

understanding. 
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• The representation must facilitate meaningful assessment of the 

learner’s response at a finer-grained level than a simple correct-

incorrect or yes-no entailment decision. 

• The representation and assessment must be learnable by an 

automated system. 

• The assessment must not require the handcrafting of domain-

specific logic representations, parsers, knowledge-based 

ontologies, or dialog management rules. 

This thesis represents just such a paradigm shift in the assessment of 

learner responses.  In order to achieve this paradigm shift, the work addresses the 

following primary research questions: 

• What type of representation might allow more productive tutoring 

dialog? 

• Can this representation be annotated consistently by human 

judges? 

• Can a machine learning algorithm be trained to generate this 

annotation automatically? 

• Can the algorithm learn to assess learners’ answers to questions not 

seen in the training data or to questions outside the domain on 

which the algorithm was trained? 

This thesis also investigates whether such an algorithm can learn to assess 

roughly sentence-length answers to science questions from elementary school 

aged children.  This is an area where no known prior work has been successful. 
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In chapter 6, I address the issue of granularity by designing a new 

representation scheme capable of providing a fine-grained analysis of student’s 

responses to questions.  This representation facilitates the automated tutor’s 

ability to recognize specifically what facets of the reference answer the tutor 

should focus on during the follow up dialogue and provides much needed detail 

regarding the student’s apparent understanding of those facets.  I focus strictly on 

the student’s understanding of the various facets of the reference answer and leave 

as future work the need to address other issues, such as tangential misconceptions 

or inaccurate beliefs held by the student.   

I employ a supervised machine learning approach in creating the answer 

assessment component.  The process involved in building and using this 

component is as follows.  First, it is necessary to construct the classifier based on 

gold standard annotated data.  In chapters 7, 8 and 9, I describe the corpus I utilize 

and details of the annotation project.  Then I train a classifier to predict the gold 

standard annotation labels for each facet of the reference answer.  This requires 

that, for each facet, I extract features from the corpus examples that are indicative 

of the student’s understanding of those reference answer facets.  These feature 

vectors are utilized by a machine learning algorithm to build the classifier model.  

The features and classifier training are detailed in chapter 10.  Finally, given a 

student’s response to one of the questions, for each reference answer facet I 

extract the same set of features used in training and feed these to the classifier 

which outputs a label categorizing the student’s understanding of each facet.  This 

system has not yet been incorporated into an automated tutor, so I evaluate the 
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system on held out test sets from the original corpus.  I describe the associated 

experiments, present the results, and include a discussion in chapters 11 through 

14. 
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6 Representing Fine-grained Semantics 

In order to optimize learning gains in the tutoring environment, there are 

myriad issues the tutor must understand regarding the semantics of the student’s 

response.  Here, I focus on drawing inferences regarding the student’s 

understanding of the low-level concepts and relationships or facets of the 

reference answer.  I use the word facet throughout this thesis to generically refer 

to some part of a text’s (or utterance’s) meaning.  The most common type of 

answer facet discussed is the semantics associated with a pair of related words 

and the relation that connects them. 

Rather than have a single yes or no entailment decision for the reference 

answer as a whole, (i.e., does the student understand the reference answer in its 

entirety or is there some unspecified part of it that we are unsure whether the 

student understands), I instead break the reference answer down into what I 

consider to be approximately its lowest level compositional facets.  This roughly 

translates to the set of triples composed of labeled (typed) dependencies in a 

dependency parse of the reference answer.  In a dependency parse, the syntactic 

structure of a sentence is represented as a set of lexical items connected by binary 

directed modifier relations called dependencies.  The goal of most English 

dependency parsers is to produce a single projective tree structure for each 

sentence, where each node represents a word in the sentence, each link represents 

a functional category relation, often labeled, between a governor (head) and a 

subordinate (modifier), and each node has a single governor (c.f., Nivre and 

Kubler 2006).  Each dependency can be labeled with a type, (e.g., subject, object, 
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nmod – noun modifier, vmod – verb modifier, sbar – subordinate or relative 

clause, det – determiner). 

The following illustrates how a simple reference answer (4) is 

decomposed into the answer facets (4a-d) derived from its dependency parse, with 

(4a’-d’) providing a gloss of each facet’s meaning.  The dependency parse tree is 

shown in Fig. 4.  As can be seen in 4b and 4c, the dependencies are augmented by 

thematic roles (e.g., Agent, Theme, Cause, Instrument, etc; c.f., Kipper, Dang and 

Palmer 2000).  The facets also include those semantic role relations that are not 

derivable from a typical dependency parse tree.  For example, in the sentence “As 

it freezes the water will expand and crack the glass”, water is not a modifier of 

crack in the dependency tree, but it does play the role of Agent in a semantic 

parse. 

(4) The long string produces a low pitch. 

(4a) NMod(string, long) 

(4b) Agent(produces, string) 

(4c) Product(produces, pitch) 

(4d) NMod(pitch, low) 

(4a’) There is a long string. 

(4b’) The string is producing something. 

(4c’) A pitch is being produced. 

(4d’) The pitch is low. 
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Fig. 4. Dependency parse tree for example reference answer 

Breaking the reference answer down into low-level facets provides the 

tutor’s dialog manager with a much finer-grained assessment of the student’s 

response, but a simple yes or no entailment at the facet level still lacks semantic 

expressiveness with regard to the relation between the student’s answer and the 

facet in question.  For example, did the student contradict the facet or completely 

fail to address it?  Did they express a related concept that indicates a 

misconception?  Did they leave the facet unaddressed?  Can you assume that they 

understand the facet even though they did not express it, (e.g., it was part of the 

information given in the question)?  It is clear that, in addition to breaking the 

reference answer into fine-grained facets, it is also necessary to break the 

annotation labels into finer levels in order to specify more clearly the relationship 

between the student’s answer and the reference answer aspect.  There are many 

other representational issues that the system must be able to handle in order to 

achieve near optimal tutoring, but these two – breaking the reference answer into 

fine-grained facets and utilizing more expressive annotation labels – are the 

emphasis of this thesis. 

This chapter provided only an overview of the semantic representation that 

will be elaborated in the coming chapters.  In the next chapter, I discuss the 

corpus I had annotated according to this representation.  Then I describe the 
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annotation itself, filling in the detail omitted in this chapter, examining some of 

the issues, and discussing the future work required to more completely represent 

and assess the learner’s understanding of the concepts the tutor is covering.  In the 

chapters following that, I describe the features extracted from this annotated 

corpus and the training of a machine learning classifier to automatically assess 

students’ responses. 
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7 Corpus 

Because most text comprehension problems take root in elementary school 

during the early years of learning to read and comprehend text, this work focuses 

on those critical grades, K-6.  I acquired data gathered from 3rd-6th grade 

students utilizing the Full Option Science System (FOSS), a proven research-

based system that has been in use across the country for over a decade (Lawrence 

Hall of Science 2005).  Assessment is a major FOSS research focus, a key 

component of which is the Assessing Science Knowledge (ASK) project, 

“designed to define, field test, and validate effective assessment tools and 

techniques to be used by grade 3–6 classroom teachers to assess, guide, and 

confirm student learning in science” (Lawrence Hall of Science 2006). 

FOSS includes sixteen diverse science teaching and learning modules (see 

Table 2) and for each module, the FOSS research team designed a set of 

summative assessment questions with reference answers.  These assessments 

included multiple choice questions, fill in the blank questions, and questions 

requesting drawings, as well as constructed response questions.  I reviewed all of 

ASK’s constructed response questions and selected all of those that were in line 

with my research goals, which consisted of 287 questions.  A representative 

sample of the questions selected with their reference answers and an example 

student answer are shown in Table 3.   
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Grade Life Science Physical Science 
and Technology 

Earth and Space 
Science 

Scientific 
Reasoning and 
Technology 

HB: Human Body ME: Magnetism 
& Electricity 

WA: Water II: Ideas & 
Inventions 

3-4 

ST: Structure of 
Life 

PS: Physics of 
Sound 

EM: Earth 
Materials 

MS:Measurement 

FN: Food & 
Nutrition 

LP: Levers & 
Pulleys 

SE: Solar Energy MD: Models & 
Designs 

5-6 

EV:Environments MX: Mixtures & 
Solutions 

LF: Landforms VB: Variables 

Table 2. FOSS / ASK Learning and Assessment Modules by Area and Grade 

These questions had expected responses ranging in length from 

moderately short verb phrases to several sentences.  I eliminated fill in the blank 

questions and questions that I thought were likely to result in short noun phrase 

answers regardless of the length of the reference answer, assuming these could 

generally be successfully assessed by most of today’s systems and would not 

require the approach described in this thesis.  Examples of such questions from 

the Physics of Sound module along with their reference answers and example 

student responses follow.  
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HB Q: Dancers need to be able to point their feet. The tibialis is the major muscle on the front of 
the leg and the gastrocnemius is the major muscle on the back of the leg. Describe how 
the muscles in the front and back of the leg work together to make the dancer’s foot point. 

R: The muscle in the back of the leg (the gastrocnemius) contracts and the muscle in the 
front of the leg (the tibialis) relaxes to make the foot point. 

A: The back muscle and the front muscle stretch to help each other pull up the foot. 

ST Q: Why is it important to have more than one shelter in a crayfish habitat with several 
crayfish? 

R: Crayfish are territorial and will protect their territory. The shelters give them places to 
hide from other crayfish. [Crayfish prefer the dark and the shelters provide darkness.] 

A: So all the crayfish have room to hide and so they do not fight over them. 

ME Q: Lee has an object he wants to test to see if it is an insulator or a conductor. He is going to 
use the circuit you see in the picture. Explain how he can use the circuit to test the object. 

R: He should put one of the loose wires on one part of the object and the other loose wire on 
another part of the object (and see if it completes the circuit). 

A: You can touch one wire on one end and the other on the other side to see if it will run or 
not. 

PS Q: Kate said: “An object has to move to produce sound.”  Do you agree with her?   Why or 
why not? 

R: Agree. Vibrations are movements and vibrations produce sound. 

A: I agree with Kate because if you talk in a tube it produce sound in a long tone.  And it 
vibrations and make sound. 

WA Q: Anna spilled half of her cup of water on the kitchen floor. The other half was still in the 
cup. When she came back hours later, all of the water on the floor had evaporated but 
most of the water in the cup was still there. (Anna knew that no one had wiped up the 
water on the floor.)  Explain to Anna why the water on the floor had all evaporated but 
most of the water in the cup had not. 

R: The water on the floor had a much larger surface area than the water in the cup. 

A: Well Anna, in science, I learned that when water is in a more open are, then water 
evaporates faster. So, since tile and floor don't have any boundaries or wall covering the 
outside, the water on the floor evaporated faster, but since the water in the cup has 
boundaries, the water in the cup didn't evaporate as fast. 

EM Q: You can tell if a rock contains calcite by putting it into a cold acid (like vinegar).  
Describe what you would observe if you did the acid test on a rock that contains this 
substance. 

R: Many tiny bubbles will rise from the calcite when it comes into contact with cold acid. 

A: You would observe if it was fizzing because calcite has a strong reaction to vinegar. 

Table 3. Sample Questions (Q) from FOSS-ASK with their reference (R) answer 
and an example student answer (A) 
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Question: Besides air, what (if anything) can sound travel 

through?  

Reference Answer: Sound can also travel through liquids and 

solids. (Also other gases.)  

Student Answer: A screen door.   

Question: Name a property of the sound of a fire engine’s siren.  

Reference Answer: The sound is very loud. OR The sound changes 

in pitch.  

Student Answer: Annoying.   

I also eliminated questions that could not be assessed objectively or that 

were very open ended.  Examples of such constructed response items are:  

Question: Design an investigation to find out a plant’s range of 

tolerance for number of hours of sunlight per day.  You can use 

drawings to help explain your design. 

Question: Design a way to use carbon printing to find out if two 

Labrador retrievers have the same paw patterns. Be sure your plan 

will not be harmful to the dogs. 

Still, there were several moderately open ended questions within the 287 

selected.  Generally, open ended questions were included if it seemed highly 

likely that students would address the same points that were included in the 

reference answer.  An example of a question in this category follows. 
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Question: What should you do if it appears that an animal is being 

harmed during an investigation? 

Reference Answer: Answers will vary.  Examples: Be more careful 

with the animal.  Stop the investigation.  Change the investigation 

so it is safer for the animal. 

  I generated a corpus from a random sample of the students’ handwritten 

responses to these questions.  ASK was pilot tested in a number of schools across 

the U.S. and in Canada, with each ASK module typically being tested in two to 

five schools.  Therefore, the students whose answers were transcribed represent a 

reasonably broad spectrum of the population.  The only special transcription 

instructions were to fix spelling errors (since these would be irrelevant in a 

spoken dialog environment, the target of this work), but not grammatical errors 

(which would still be relevant), and to skip blank answers and non-answers 

similar in nature to I don’t know (since these are not particularly interesting from 

the research perspective).   

In total, approximately 16,000 student responses were transcribed, roughly 

100 per question for three test set modules (Environment, Human Body and 

Water) and 40 per question for the remaining thirteen modules. This resulted in 

about 144,000 total facet annotations.  Three test sets were created by 1) 

withholding all the data from the three modules discussed above – resulting in a 

dataset that can be used to test domain-independent algorithms or performance, 2) 

withholding all answers to a subset of questions from each of the other modules – 
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resulting in a dataset that can be used to test question-independent algorithms or 

performance, and 3) withholding approximately 6% of the answers to the 

remaining questions – resulting in a dataset that can be used to test algorithms 

intended to handle specific predetermined questions.  There are 56 questions and 

approximately 5,600 student answers in the domain-independent test set, 

comprising approximately 20% of all of the questions utilized and 36% of the 

total number of transcribed student responses.  There are 22 questions and 

approximately 880 student answers in the question-independent test set, 

comprising approximately 8% of all of the questions and 6% of the responses.  

The third test set spanned the remaining 73% of the questions and included 

around 500 learner responses or 3.2% of all responses.  This resulted in around 

45% of the answers being set aside for testing the learning algorithms, with the 

remainder designated for training and development tuning.   

I selected the three domain-independent test set modules because they 

appeared to be representative of the entire corpus in terms of difficulty and 

appropriateness for the types of questions that met my research interests.  They 

were also roughly average sized modules in terms of the number of questions they 

contained.  The items included in the question-independent test set were chosen 

randomly, but with two criteria.  First, the items were chosen to include at least 

one question from each module in the training set and to, otherwise, maintain 

approximately the same question proportions as the training set (the five smallest 

modules had only one question, the largest had three, and the remaining seven 

modules had two questions).  Second, I did not include questions whose reference 
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answers had significant overlap with questions that would remain in the training 

data.  For example, the following questions from the Ideas and Inventions module 

would not have been selected due to their reference answer similarity. 

Question: Landra was trying to find out which pen with blue ink 

was used to write a note in her class.  If she used chromatography 

to find the pen that wrote the note, … explain how she could use 

the chromatograms from the pens she tested to determine which 

one wrote the note. 

Reference Answer: She should compare the pattern of colors on 

the chromatograms from the pens she tested with a chromatogram 

from the ink on the note. 

Question: James had two brown watercolor pens. He wanted to 

find out if they were made by the same company.  He made 

chromatograms using each of the two pens.  How would James use 

the chromatograms to help him decide if the pens were made by 

the same company? 

Reference Answer: James should compare the pattern of the 

pigments on the chromatograms.  If they are similar the pens were 

probably made by the same company. 

In order to maximize the diversity of language and knowledge represented 

by the training and test datasets, random selection of students was performed at 

the question level rather than using the same students’ answers for all of the 
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questions in a given module.  However, in total there were only about 200 

children that participated in any individual science module assessment, so there is 

still moderate overlap in the students from one question to another within a given 

module.  On the other hand, each assessment module was given to a different 

group of children, so there is no overlap in students between modules. 
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8 Reference Answer Markup 

The annotation of student answers consists of two principal steps.  First, 

each reference answer in the corpus, as specified by the ASK research team, was 

decomposed by hand into its constituent facets.  Then each student answer was 

annotated relative to the facets in the corresponding reference answer to describe 

whether and how those facets were addressed by the student.  Every student 

answer was double-blind annotated and a third annotator reviewed the others’ 

labels and made the final decision on each facet’s label.  I describe the details 

associated with the reference answer markup in this chapter and the student 

answer annotation details in the next chapter. 

8.1 Reference Answer Decomposition and Representation 

The ASK assessments included a reference answer for each of their 

constructed response questions.  These reference answers were broken down into 

low-level facets, roughly extracted from the relations in a syntactic dependency 

parse (c.f., Nivre and Scholz 2004) and a shallow semantic parse (Gildea and 

Jurafsky 2002).  This decomposition was performed by hand with the assistance 

of an undergraduate Linguist, who made the first pass over the majority of the 

reference answers, with me reviewing and modifying the analysis.  Since the 

decomposition is based closely on well established frameworks, dependency 

parsing and shallow semantic parsing, it was not included in the scope of the 

experimental research – no formal guidelines were written and the facets were not 

annotated double blind to calculate inter-annotator agreement.   



  47 

The Physics of Sound reference answers were distilled into their most 

critical elements.  However, minimal changes were made to the remaining 

answers, since it would be desirable for the system to be able to handle future 

reference answers written by educators who do not have detailed knowledge of 

the assessment system, and in the long-term, to handle questions and reference 

answers generated automatically by the ITS.  The most common transformations 

were to replace nearly all pronouns with their coreferring nouns and to 

occasionally drop small parts of sentences that were not relevant to the key 

concepts.  The following is a typical example that illustrates each of these 

modifications in italics. 

Original Reference Answer: James should compare the pattern of 

the pigments on the chromatograms. (If they are similar the pens 

were probably made by the same company.) 

Modified Reference Answer: Compare the pattern of the pigments 

on the chromatograms. If the chromatograms are similar the pens 

were probably made by the same company. 

The decomposition of the final reference answers began by determining 

the dependency parse, following the style of the 2006 version of MaltParser 

(Nivre et al. 2006) – they have since expanded their dependency tags to include 

all of the functional tags in the Penn Treebank.  This dependency parse was then 

modified in several ways.  First, wherever a shallow semantic parse would 

identify a predicate argument structure, I used thematic role labels (c.f., Kipper, 
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Dang and Palmer 2000) between the predicate and the argument’s headword, 

rather than the MaltParser dependency tags.  This also involved, adding new 

structural dependencies that a typical dependency parser would not generate, as 

discussed in chapter 6.  In a small number of instances, these labels were also 

attached to noun modifiers, most notably the Location label.  For example, given 

the reference answer fragment The water on the floor had a much larger surface 

area, one of the facets extracted was Location_on(water, floor). 

Various linguistic theories take a different stance on what term should be 

the governor in a number of phrase types, particularly noun phrases.  In this 

regard, the manual parses here varied from the style of MaltParser by raising 

lexical items to governor status when they contextually carried more significant 

semantics.  For example, the noun phrases the pattern of pigments and the bunch 

of leaves typically result in identical dependency parses.  However, in Fig. 5, the 

word pattern is considered the governor of pigments and thus also modifies 

Compare and governs chromatograms; whereas, in Fig. 6, the word leaves is 

treated as the governor of bunch because it carries more semantics and thus 

becomes a modifier of are (or the governor of part as described in the next 

paragraph). 

 
Fig. 5. Typical dependency parse of a NP with an embedded PP 
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Fig. 6. Nonstandard dependency parse raising core semantic term leaves to head 

The parses were also modified to incorporate prepositions, copulas, terms 

of negation, and similar terms into the dependency type labels (c.f., Lin and 

Pantel 2001).  This can be seen in the reference answer fragments in Fig. 5 and 

Fig. 6, where of, on, and are were incorporated into the relations of the 

consolidated dependencies, (e.g., normally pattern of pigments would be parsed as 

two dependencies, NMod(pattern, of) and PMod(of, pigments), but here they are 

combined into the single dependency NMod_of(pattern, pigments)).  When 

auxiliaries did not contribute much to the semantics of the reference answer, they 

were not included in the facets extracted.  Fig. 7 shows the standard MaltParser 

dependency parse and the revised parse for a reference answer fragment that 

includes several of the issues discussed in this paragraph.  Example 5 illustrates 

the decomposition of this same answer fragment into its constituent facets along 

with their glosses. 

 
Fig. 7. Typical dependency parse revisions for reference answer facets 
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(5) The brass ring would not stick to the nail because the ring 

is not iron. 

(5a)  NMod(ring, brass)  

(5a’) The ring is brass. 

(5b)  Theme_not(stick, ring) 

(5b’) The ring does not stick. 

(5c)  Destination_to_not(stick, nail) 

(5c’) Something does not stick to the nail. 

(5d)  Be_not(ring, iron) 

(5d’) The ring is not iron. 

(5e)  Cause_because(stick, is) 

(5e’) 5b and 5c are caused by 5d. 

I refer to facets that express relations between higher-level propositions as 

inter-propositional facets.  An example of such a facet is (5e) above, connecting 

the proposition the brass ring did not stick to the nail to the proposition the ring is 

not iron.  In addition to specifying the headwords of inter-propositional facets 

(stick and is, in 5e), I also indicate up to two key facets from each of the 

propositions that the relation is connecting (b, c, and d in example 5).  Reference 

answer facets that are assumed to be understood by the learner a priori, (e.g., 

because they are part of the question), are annotated to indicate this.  The details 

of reference answers including their facet definitions are stored in a stand-off 

markup in an xml file. 
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There were a total of 2878 reference answer facets, resulting in a mean of 

10 facets per question (median of 8 facets).  Table 4 shows a high-level break 

down of the reference answer facets.  Facets that were assumed to be understood a 

priori by students accounted for 33% of all facets and inter-propositional facets 

accounted for 11%.  The experiments in automated annotation of student answers 

(chapters 12 and 13) focus on the facets that are not assumed to be understood a 

priori (67% of all facets); of these, 12% are inter-propositional.  Fig. 8 charts the 

frequency of questions that had a specified number of total facets and the 

frequency that had the specified number of facets not assumed to be understood a 

priori. 

Category of Facets Frequency Frequency 
/ Question 

% of 
Total 

% (not) 
assumed 

All facets 2878 10.0 100  

Assumed 950 3.3 33  

Not assumed 1928 6.7 67  

Inter-propositional 325 1.1 11  

Simple 2553 8.9 89  

Inter-propositional assumed 100 0.3 3 11 

Simple assumed 850 3.0 30 89 

Inter-propositional not assumed 225 0.8 8 12 

Simple not assumed 1703 5.9 59 88 

Table 4. High-level break down of reference answer facets 
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Fig. 8. Frequency of questions with a number of facets 

A total of 37 different facet relation types were utilized (see Table 5).  The 

majority, 21, are VerbNet thematic roles.  Direction, Manner, and Purpose are 

PropBank adjunctive argument labels (Palmer, Gildea and Kingsbury 2005).  

Origin, Quantifier, and Cause-to-Know were added to the preceding thematic 

roles.  Additionally, as indicated above, copulas and similar verbs (e.g., be, 

become, do, and have) were themselves considered to be facet relation types 

connecting their arguments.  Finally, anything that did not fit into the above 

categories retained its dependency parse type: VMod (Verb Modifier), NMod 

(Noun Modifier), AMod (Adjective or Adverb Modifier), and Root (Root was 

used when a single word in the answer, typically yes, no, agree, disagree, A-D, or 

a number, stood alone without a significant relation to the remainder of the 

reference answer; this occurred only 21 times, accounting for fewer than 1% of 

the reference answer facets).  The seven highest frequency relations are NMod, 
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Theme, Cause, Be, Agent, AMod, and Location, which together account for 75% 

of the reference answer facet relations (see Fig. 9). 

VerbNet 
Role 

Not 
Asmd Asmd Total 

 
Other Roles 

Not 
Asmd Asmd Total 

Actor 1 0 1  PropBank Adjs    

Agent 92 67 159  Direction 18 5 23 

Attribute 15 3 18  Manner 42 7 49 

Beneficiary 3 0 3  Purpose 2 2 4 

Cause 159 83 242      

Destination 55 17 72  Misc. Types    

Experiencer 6 1 7  Cause-know 15 12 27 

Extent 21 10 31  Origin 2 0 2 

Instrument 11 5 16  Quantifier 60 26 86 

Location 86 44 130      

Material 14 5 19  Special Verbs    

Patient 40 19 59  Be 144 50 194 

Predicate 16 3 19  Become 7 2 9 

Product 33 13 46  Do 1 0 1 

Recipient 9 7 16  Have 23 25 48 

Source 10 5 15      

Stimulus 13 5 18  Dependencies    

Theme 357 155 512  AMod 113 24 137 

Time 64 20 84  NMod 447 324 771 

Topic 8 2 10  Root 21 0 21 

Value 2 1 3  VMod 18 8 26 

Table 5. Reference answer facet types and frequencies 
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Fig. 9. Logarithmic chart from highest to lowest frequency facet relation types 

8.2 Discussion and Future Work on Reference Facets 

There are many interesting and open issues in the area of reference answer 

facet extraction.  For example, many adjectives have properties extremely similar 

to verbs, while others do not.  In the first case, I generally extracted facets 

considering the adjective as a predicate and using the associated thematic roles to 

potentially distant arguments that would typically not be connected in a 

dependency parse.  For example, in the reference answer fragment the surface 

tension is broken, I treat broken as the predicate and extract the facet 

Patient(broken, tension) rather than Be(tension, broken).  However, the second set 

of adjectives are treated as simple noun modifiers or as the modifiers in copula 

relations (e.g., in oil is less dense, I extract Be(oil, dense)).  Other adjectives exist 

somewhere in the middle of the range (e.g., longer, shorter, tighter, looser, lower, 

and saturated all have verb forms, but they are used infrequently, particularly in 

the context given by these reference answers).  The criteria for when adjectives 
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should be treated as predicates and when they should be treated as modifiers 

should be examined more closely.  Perhaps the right approach is to use their most 

common form co-occurring with the other key terms in the sentence (e.g., if 

saturated occurs more often as an adjective than as a verb in the presence of the 

word mixture, it should be treated as an adjective modifying the noun rather than 

as a predicate governing it). 

Further consideration should be given to how to handle conjunctions and 

disjunctions.  Often, it is sufficient to simply extract a separate facet for each 

conjoined noun, but other times this is inappropriate, (e.g., in The seed becomes 

bigger and heavier, it is okay to treat this as The seed becomes bigger and 

separately, The seed becomes heavier; whereas, it is inadequate to treat salt and 

water form a solution, as salt forms a solution and, separately, water forms a 

solution). 

A more formal analysis should be conducted to decide what characteristics 

contribute to text adding little value to the reference answer semantics.  A 

common case involves modals; generally modals add very little value to a 

reference answer and can be omitted from the facets, but at times it is important 

that they be addressed.  For example, in the reference answer Elena should 

include a separate shelter for each lizard, the modal should adds relatively little 

value; whereas, in the answer fragment If the magnets are weak, the second piece 

of foam might put too much distance between the two magnets for the interaction 

to hold the magnets in place, the modal might is more important, since an 

alternative, incorrect student belief is that the second piece of foam would 
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definitely add too much distance.  Quantifiers result in similar situations; in The 

channel for the ships cannot go over any of the shallow areas, the phrase any of 

can be dropped without loss of significant meaning; whereas, dropping any in 

Evaporation can occur at any temperature does result in a loss of important 

information.  If semantically vacuous text was left in the reference answers, rather 

than revise the first pass reference answer decomposition completely to remove 

this text as described in the previous section, I often just removed the associated 

facets.  For example, in the reference answer fragment Insulate each house with a 

different kind of insulation, the facet connecting Insulate and insulation adds no 

value over the concept of Insulate on its own, so I removed this facet from the list.   

When a facet is assumed to be understood by a student a priori, it is 

marked to indicate this.  However, currently only the entire facet can be tagged as 

assumed, while at times it would be optimal to mark one of the terms in the facet 

as assumed, but not the other.  For example, given the question Describe the 

function of the seed coat and the reference response The seed coat protects the 

seed until the plant begins to grow, you can assume that the student will be 

discussing the seed coat, but you cannot mark the entire facet Agent(protects, 

coat) as assumed, since it includes other key information that you cannot assume 

to be understood a priori.  The ability to tag one term in a facet as assumed should 

be added to the system in the future. 

Additional markup will also be required to ensure appropriate integration 

of this assessment technology into the ITS.  For example, in many cases, there are 

one or more facets that are not important enough to result in extended dialogue.  
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There are also cases where the student is only required to address a fraction of the 

reference answer, (e.g., Explain how one of the observations helped you to decide 

whether the stone is a rock or a mineral). 

In the long term, when the ITS generates its own questions and reference 

answers, the system will have to construct its own reference answer facets.  The 

automatic construction of reference answer facets must deal with all of the issues 

described in this section and is a significant area of future research.  Only with the 

automatic extraction of reference answer facets can the assessment technology 

described in this thesis to be considered completely domain-independent. 
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9 Student Answer Annotation 

9.1 Annotation Guidelines 

The answer assessment annotation described in this chapter is intended to 

be a step toward specifying the detailed semantic understanding of a student’s 

answer that is required for an ITS to interact as effectively as possible with a 

learner.  With that goal in mind, annotators were asked to consider and annotate 

according to what they would want to know about the student’s answer if they 

were the tutor.  The key exception here is that they are only annotating a student’s 

answer in terms of whether or not it implies that the student understands each 

facet of the reference answer.  If the student also discusses concepts not addressed 

in the reference answer, those points are not annotated regardless of their quality 

or accuracy. 

After analyzing much of the Physics of Sound data, I settled on the eight 

annotation labels noted in Table 6 (Nielsen and Ward 2007).  Descriptions of 

where each annotation label applies and some of the most common annotation 

issues were detailed with several examples in the guidelines and are only very 

briefly summarized in the remainder of this section. 
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Label Brief Description 

Assumed Facets that are assumed to be understood a priori based on the 
question 

Expressed Any facet directly expressed or inferred by simple reasoning 

Inferred Facets inferred by pragmatics or nontrivial logical reasoning 

Contra-Expr Facets directly contradicted by negation, antonymous expressions 
and their paraphrases 

Contra-Infr Facets contradicted by pragmatics or complex reasoning 

Self-Contra Facets that are both contradicted and implied (self contradictions) 

Diff-Arg The core relation is expressed, but it has a different modifier or 
argument 

Unaddressed Facets that are not addressed at all by the student’s answer 

Table 6. Facet Annotation Labels 

Example 6 shows a question and a fragment of its reference answer broken 

down into its constituent facets with an indication of whether the facet is assumed 

to be understood a priori.  A corresponding student answer is shown in (7) along 

with its final annotation in 7a-c.  It is assumed that the student understands that 

the pitch is higher (facet 6b), since this is given in the question (… Write a note to 

David to tell him why the pitch gets higher rather than lower) and similarly it is 

assumed that the student will be explaining what has the causal effect of 

producing this higher pitch (facet 6c).  Therefore, unless the student explicitly 

addresses these facets they are labeled Assumed.   
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(6) Question: After playing the FOSS-ulele, David wrote his 

results in his lab notebook: 

I’m confused. When I pull down and tighten the string on the 

FOSS-ulele, then pluck the string, the pitch sounds HIGHER than 

it did before. But aren’t I making the string longer when I pull the 

string? I thought a longer length produced a LOWER pitch. What’s 

going on here? 

What is causing the pitch to be higher? Write a note to David to 

tell him why the pitch gets higher rather than lower. 

Reference Answer: The string is tighter, so the pitch is higher. 

(6a)  Be(string, tighter), --- 

(6b)  Be(pitch, higher), Assumed 

(6c)  Cause(6b, 6a), Assumed 

(7) David this is why because you don't listen to your teacher. If 

the string is long, the pitch will be high. 

(7a) Be(string, tighter), Diff-Arg 

(7b) Be(pitch, higher), Expressed 

(7c) Cause(7b, 7a), Expressed 

Since the student does not contradict the fact that the string is tighter (the 

string can be both longer and tighter), we do not label this facet as Contradicted.  

If the student’s response did not mention anything about either the string or 

tightness, we would annotate facet 7a as Unaddressed.  However, the student did 
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discuss a property of the string, the string is long.  This parallels the reference 

answer facet Be(string, tighter) with the exception of a different argument to the 

Be relation, resulting in the annotation Diff-Arg.  This indicates to the tutor that 

the student expressed a related concept, but one which neither implies that they 

understand the facet nor that they explicitly hold a contradictory belief.  Often, 

this indicates the student has a misconception.  For example, when asked about an 

effect on pitch, many students say things like the pitch gets louder, rather than 

higher or lower, which implies a misconception involving their understanding of 

pitch and volume.  In this case, the Diff-Arg label can help focus the tutor on 

correcting this misconception.  Facet 7c, expressing the causal relation between 

7a and 7b, is labeled Expressed, since the student did express a causal relation 

between the concepts aligned with 7a and 7b.  The tutor then knows that the 

student was on track in regard to attempting to express the desired causal relation 

and the tutor need only deal with the fact that the cause given was incorrect.   

The Self-Contra annotation is used in cases like the response in example 8, 

where the student simultaneously expresses the contradictory notions that the 

string is tighter and that there is less tension. 

(8) The string is tighter, so there is less tension so the pitch gets 

higher. 

(8a) Be(string, tighter), Self-Contra 

(8b) Be(pitch, higher), Expressed 

(8c) Cause(8b, 8a), Expressed 
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Example 9 illustrates a case where a student’s answer is labeled Inferred.  

In this case, the decision requires pragmatic inferences, applying the Gricean 

maxims of Relation, be relevant – why would the student mention vibrations if 

they did not know they were a form of movement – and Quantity, do not make 

your contribution more informative than is required (Grice 1975). 

(9) Question: Kate said: “An object has to move to produce 

sound.” Do you agree with her? Why or why not? 

Reference Answer: “Agree. Vibrations are movements and 

vibrations produce sound.” 

Student Answer: Yes because it has to vibrate to make sounds. 

(9a) Root(root, agree), Expressed 

(9b) Be(vibration, movement), Inferred 

(9c) Agent(produce, vibrations), Expressed 

(9d) Product(produce, sound), Expressed 

There is no compelling reason from the perspective of the automated 

tutoring system to differentiate between Expressed, Inferred and Assumed facets, 

since in each case the tutor can assume that the student understands the concepts 

involved.  However, from the systems development perspective there are three 

primary reasons for differentiating between these facets and similarly between 

facets that are contradicted by inference versus by more explicit expressions.  The 

first reason is that most systems today cannot hope to detect very many pragmatic 

inferences, which are the main source of the Inferred and Assumed labels, and 
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including these in the training data can sometimes confuse learning algorithms 

resulting in worse performance.  Having separate labels allows one to remove the 

more difficult inferences from the training data, thus eliminating this problem.  

The second rationale is that systems hoping to handle both types of inference 

might more easily learn to discriminate between these opposing classifications if 

the classes are distinguished (for algorithms where this is not the case, the classes 

can easily be combined automatically).  Similarly, this allows the possibility of 

training separate classifiers to handle the different forms of inference.  The third 

reason for separate labels is that it can facilitate system evaluation, including the 

comparison of various techniques and the effect of individual features – one can 

assess separately whether a technique or feature had a positive or negative impact 

on the Inferred facets or on the Expressed facets. 

9.2 Annotation Tool 

The annotation tool displays the question, reference answer and student 

answer at the top of the window and, in the main body, lists all of the reference 

answer facets that students are expected to address (see Fig. 10).  Both a formal 

relational representation and an English-like gloss of the facets are displayed in a 

table, one facet per row.  The annotator’s job is to select one of the possible labels 

(see Table 6) from a drop-down list for each facet to indicate the extent to which 

the student addressed that facet.   
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Fig. 10. Partial image of the annotation tool 

When the facet is assumed to be understood a priori, the Unaddressed 

label is not an option in the drop-down list and, since Assumed is essentially the 

same thing as Inferred a priori, Inferred is also not an option.  Originally, the 

annotation tool automatically defaulted the Assumed label for these facets and 

annotators were expected to change it as appropriate, but I found that in many 

cases annotators appeared to forget to review these facets.  Similarly, when both 

annotators had agreed, the tool automatically filled in the labels during 

adjudication, but again, even in cases where the adjudicator had clearly expressed 

a different point of view on similar previous student responses, they seemed to 
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forget to review many of these pre-filled facets.  Therefore, I modified the tool to 

force annotators to physically specify their choices in all cases. 

Occasionally it is difficult to know specifically to which part of the 

reference answer a facet is referring.  This is particularly true when a facet might 

be essentially repeated in a different context within the reference answer or for 

facets that express relations between other facets or higher-level propositions.  To 

help resolve this ambiguity, when an annotator clicks on a facet, the tool 

emphasizes the associated parts of the reference answer by setting the font of the 

key terms to bold (see the facet being annotated in Fig. 10). 

The annotated student answers are stored in a stand-off markup in xml 

files, including an annotated element for each reference answer facet.  The 

annotation tool retrieves one student answer at a time from a web server and 

returns the annotation for storage in the same xml format. 

9.3 Annotators 

Annotators were all college students, ranging from first year 

undergraduates to graduate students and came from a variety of departments 

including Education, Linguistics, and Computer Science at CU Boulder and 

Cognitive Science at MIT.  In total, seven annotators were involved over the 

course of the project.  Generally, the same annotator performed the entire first, 

second, or adjudication tagging for all of the questions in a given science module 

to reduce the learning curve. 
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9.4 Annotator Training 

Training annotators normally took a significant amount of time and the 

training did not transfer well to new science modules.  Initial training was on the 

Physics of Sound science module.  I created three annotator training datasets, the 

first of which included many of the more challenging-to-annotate student 

answers, with the second and third sets representing a random distribution of 

answers.  Having read the annotation guidelines, the training consisted of blind 

annotation of the training set answers with immediate system feedback following 

the annotation of each answer.  This forced the annotators to think through the 

annotation and rationalize their own thoughts before learning the gold-standard 

label.  Early in the project, the feedback was simply a message indicating which 

of the facets were labeled inconsistently with the gold standard, under the hope 

that having to think through what the gold standard might be would result in 

deeper learning than just presenting the gold standard immediately.  The first 

annotator found this extremely frustrating; so the process was modified such that, 

after thinking it through and making their own annotation decisions, the gold 

standard labels were simply displayed in the comments field for the annotator to 

review.  They then had to revise their annotations before proceeding. 

The average agreement with the gold standard annotation on the first pass 

through the initial, challenging dataset was around 80%.  After jointly reviewing 

and discussing the differences, the annotators repeated the same dataset until they 

felt comfortable with the rationale behind the gold standard annotation.  This 

same process was repeated for the next annotator training dataset.  The final 
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dataset was intended more as a means of estimating expected performance, but 

still did provide the same training feedback.   

Inter-annotator agreement on the final dataset for the first two annotators 

was 87.7 % and their average agreement with the gold standard was 93.5%.  

However, inter-annotator agreement on the next module annotated dropped to 

77.5%.  I believe the primary reason for this was that, while the training 

annotation review was directed toward the general concepts in the guidelines, in 

practice, the annotators were also learning question-specific patterns of annotation 

that could be applied to several very similar student answers.  It is also likely that 

the annotation was somewhat easier for the Physics of Sound module, since I had 

simplified most of its reference answers.  Another factor is that each module 

required implicit learning of the scientific concepts.  For example, annotators 

needed to (re)learn the scientific usage of terms, such as effort and work, and the 

differences between these and their colloquial meanings.  There is also a fair 

amount of scientific terminology that is not commonly used outside of science 

education, such as cotyledon, isopod, elytra, and chromatogram. 

Therefore, hoping to improve inter-annotator agreement on other modules, 

I decided to create small training sets for each science module.  The final process 

involved selecting six student answers for each question that were representative 

of a broad spectrum of the more challenging-to-annotate answers.  These answers 

went through the regular annotation process, being blind annotated twice and then 

adjudicated, but this adjudication, generally performed by me, often included 

significant detail on why the final label was selected.  The adjudicated values 
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were moved to the first annotation’s comments field and these answers were then 

included as the first set of data to annotate before proceeding with the 

unannotated answers.  In other words, the annotator would see the six training 

examples, one-by-one, with the first two annotators’ tags in their columns and the 

gold standard annotation visible in the comments field along with a rationale 

where appropriate.  After reviewing each of these, the annotator went on to label 

the remaining answers for that question.   

9.5 Inter-annotator Agreement Results 

I evaluate the annotation results under three label groupings: 1) All-Labels, 

where all labels are left separate, 2) Tutor-Labels consists of the five labels that 

will be used by the automated tutor, where Expressed, Inferred and Assumed are 

combined into a single Understood class (i.e., the annotator believes the student 

understands the facet), Contra-Expr and Contra-Infr are replaced with 

Contradicted (i.e., the annotator believes the student holds a contradictory view), 

and the remaining labels are left as is, and 3) Yes-No, which is a binary decision, 

Understood versus all other labels.  I calculate inter-annotator agreement based on 

all 16 of the science modules, totaling 144,716 total facet annotations.  I also 

evaluate this agreement using Cohen’s Kappa statistic (Cohen 1960), which 

contrasts the actual proportion of agreement P(A) with the agreement expected by 

chance P(E): 
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Tutor-Labels are the labels that will be used by the system, since it is 

relatively unimportant to differentiate between the types of inference required in 

determining that the student understands (or has contradicted) a reference answer 

facet. Agreement on the Tutor-Labels is 86.1%, with a Kappa statistic of 0.728 

corresponding with substantial agreement.  Agreement is 78.5% on All-Labels 

and 87.9% on the binary Yes-No decision.  These too have Kappa statistics in the 

range of substantial agreement (see Table 7 for details).   

Label 
Grouping 

ITA 
% 

Kappa 

All-Labels 78.5 0.704 

Tutor-Labels 86.1 0.728 

Yes-No 87.9 0.752 

Table 7. Inter-annotator agreement by label groupings, with Kappa statistics 

The distribution of the 94,592 facet labels that were adjudicated at the 

time of writing is shown in Table 8.  The most frequent fine-grained label is 

Unaddressed, at 35.3%, and the majority of the Tutor-Labels indicate the student 

understood the facet. 



  70 

Label Count % of Total Count % of Total 

Assumed 24,178 25.6 

Expressed 22,582 23.9 

Inferred 11,990 12.7 

58,750 62.1 

Contra-Expr 882 0.9 

Contra-Infr 495 0.5 
1,377 1.5 

Self-Contra 55 0.1  0.1 

Diff-Arg 1,037 1.1  1.1 

Unaddressed 33,373 35.3  35.3 

Table 8. Distribution of annotation labels 

An analysis of the inter-annotator confusion matrix indicates that the most 

probable disagreement is between Inferred and Unaddressed, representing 39% of 

all the disagreements (the confusion as a percentage of the total disagreements is 

shown in parentheses in Table 9).  The next most likely disagreements are 

between Expressed and the other Understood labels (Inferred and Assumed), 

comprising 35% of the disagreements.  Confusion between Expressed and 

Unaddressed is also considerable, representing 10.38% of all the annotator 

disagreements.  
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Labels 
% of Total 
(% of Errs) 
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Assumed 23.73 3.58 
(16.63) 

n/a 
(n/a) 

0.08 
(0.37) 

0.09 
(0.43) 

0.01 
(0.04) 

0.35 
(1.63) 

n/a 
(n/a) 

Expressed  15.72 3.95 
(18.34) 

0.10 
(0.45) 

0.06 
(0.26) 

0.03 
(0.14) 

0.30 
(1.41) 

2.23 
(10.38) 

Inferred   5.28 0.06 
(0.28) 

0.12 
(0.55) 

0.01 
(0.06) 

0.31 
(1.44) 

8.31 
(38.60) 

Contra-Expr    0.61 0.15 
(0.69) 

0.02 
(0.10) 

0.07 
(0.31) 

0.29 
(1.34) 

Contra-Infr     0.11 0.01 
(0.03 

0.03 
(0.16) 

0.44 
(2.04) 

Self-Contra      0.01 0.00 
(0.01) 

0.01 
(0.05) 

Diff-Arg       0.41 0.92 
(4.25) 

Unaddressed        32.61 

Table 9. Inter-annotator Confusion Matrix by percent of data and (percent of all 
disagreements) 

Annotator agreement with the gold-standard adjudicated values can be 

seen as an approximation of annotator performance.  The associated confusion 

matrix along with class-level precision, recall and F-measure are shown in Table 

10.  The overall annotator accuracy by this estimate is 84.6% on the fine-grained 

labels shown here and 90.2% on the Tutor-Labels.  This is most likely an over-

estimate of annotator accuracy, since adjudicators are probably biased toward 

using the labels chosen by the annotators.  This confusion matrix indicates that 
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annotators are more than twice as likely to errantly choose Unaddressed over 

Inferred (28.6% of the errors) as to make any other error.  The reverse error is the 

second most likely, with confusions among positive labels following. 

 Annotator 
 Label: 
Gold 
Label 
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Assumed 24.37 0.99 
(6.40) 

n/a 
(n/a) 

0.03 
(0.20) 

0.02 
(0.14) 

0.00 
(0.02) 

0.15 
(0.95) 

n/a 
(n/a) 

93.1 95.3 0.942 

Expressed 1.67 
(10.83) 

19.75 1.25 
(8.11) 

0.04 
(0.24) 

0.02 
(0.11) 

0.01 
(0.07) 

0.16 
(1.03) 

0.98 
(6.34) 

86.0 82.7 0.843 

Inferred n/a 
(n/a) 

1.63 
(10.58) 

6.40 0.02 
(0.14) 

0.03 
(0.23) 

0.00 
(0.03) 

0.16 
(1.06) 

4.42 
(28.62) 

67.3 50.5 0.577 

Contra-Expr 0.02 
(0.14) 

0.03 
(0.23) 

0.02 
(0.12) 

0.67 
 

0.03 
(0.21) 

0.01 
(0.06) 

0.02 
(0.12) 

0.13 
(0.81) 

71.6 72.1 0.718 

Contra-Infr 0.01 
(0.09) 

0.03 
(0.17) 

0.04 
(0.27) 

0.09 
(0.55) 

0.14 0.00 
(0.02) 

0.02 
(0.15) 

0.19 
(1.23) 

41.0 26.8 0.324 

Self-Contra 0.00 
(0.01) 

0.02 
(0.13) 

0.01 
(0.06) 

0.00 
(0.02) 

0.00 
(0.01) 

0.02 0.00 
(0.00) 

0.00 
(0.02) 

36.9 34.5 0.357 

Diff-Arg 0.10 
(0.62) 

0.07 
(0.43) 

0.08 
(0.54) 

0.03 
(0.20) 

0.01 
(0.09) 

0.00 
(0.02) 

0.53 0.28 
(1.78) 

39.3 48.3 0.434 

Unaddressed n/a 
(n/a) 

0.45 
(2.90) 

1.70 
(11.04) 

0.06 
(0.38) 

0.08 
(0.52) 

0.00 
(0.01) 

0.30 
(1.97) 

32.68 84.5 92.6 0.884 

Table 10. Annotator percent agreement with gold-standard and (percent of error) 

9.6 Discussion and Future Work on Annotation 

Overall, inter-annotator agreement results are reasonable, 86% on the 

Tutor-Labels, obtaining substantial agreement according to the Kappa statistic.  

This agreement should be high enough to enable automated classification at a 

reasonable accuracy.  On the other hand, inter-annotator agreement is marginal to 
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poor on a number of the detailed labels, specifically Self-Contradiction, Different-

Argument, Inferred, and Contradiction-Inferred.  I examine each of these four 

labels in the following paragraphs and address why I do not see the lower 

performance on these four labels as a significant issue.  Estimates of annotation 

errors in this section are drawn from average annotator agreement with the 

adjudicated gold-standard. 

9.6.1 Error Analysis 

The Self-Contra class and its estimated errors represent far too little of the 

data to be a concern, just 0.06% and 0.04% of the data, respectively.  However, if 

annotation errors result in similar system errors and the system interprets these as 

contradictions (11% of these errors), the dialogue, while not optimal, should not 

be frustrating or inappropriate, as the student did contradict the facet.  If the ITS 

treats them as Unaddressed or Diff-Arg (11% of the time), it will ask additional 

questions to clarify the student’s understanding, which again is suboptimal, but 

not a significant problem.  If the ITS assumes the student does understand the 

facet (78% of these errors), the student will miss a potential learning opportunity, 

but this represents only about 0.04% of all the facets.  Furthermore, I believe this 

is an area that the system might benefit from other labeled training examples, 

those representing understanding and contradictions.  It seems likely that, in the 

future, the system could outperform humans on this task.  It is also worth noting 

that humans perform extremely poorly on identifying these self-contradictions 

and yet, human tutoring is extremely effective, implying that a moderate error rate 

should not be a significant problem. 
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The Diff-Arg class and its estimated errors account for only 1.1% and 

0.6% of the facet annotations respectively.  The primary rationale for this class 

was to attempt to detect misconceptions.  There are a variety of views on what 

misconceptions are; one definition being that a misconception is a belief that is 

objectively false, is common or typically held by a group of people, and is 

persistent – has been held for some time or is rooted in an incorrect view of the 

world that is not trivial to overcome.  For example, in a question asking if a brass 

ring would stick to a magnet, a student indicated that it would because it was 

made of brass, suggesting a common misconception that all metals can become 

temporary magnets.  Similarly, when asked if an ordinary string would complete a 

circuit, another student responded No because a string is not made of iron or 

steel, suggesting a common misconception that only iron or steel can conduct 

electricity.  Under this view of misconceptions, the vast majority of facets that fall 

within the category of Diff-Arg are not misconceptions.  However, if the 

definition is relaxed to simply a belief that is objectively false, then I believe a 

small majority of the Diff-Arg labels are misconceptions directly related to the 

reference answer facet.  For example, given the partial reference answer A female 

[crayfish] has an egg pore and longer swimmerets than a male and the student 

answer The female crayfish has an egg pore or belly button, and it has more 

swimmerets, the annotation indicates that there is a different argument modifying 

swimmerets, specifically more versus longer.  Furthermore, it does appear that the 

ITS dialogue could benefit from the recognition that the student addressed a very 

similar relation and that just a part of the facet was not an appropriate match.  For 
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example, given the reference answer The seed coat protects the seed until the 

plant begins to grow and the student answer to protect the cotyledon, the tutor 

could acknowledge that the seed coat protects something and then focus the 

dialogue on what exactly it protects.   

Therefore, I believe it is worth experimenting with the Diff-Arg tag to see 

the effect on tutoring quality.  In regard to the annotator errors and disagreements 

associated with Diff-Arg, if it was eliminated, the same annotation errors would 

exist between its replacement, Unaddressed, and the other classes.  The place 

these errors have the highest likelihood of hurting the dialogue quality is when the 

student is actually correct.  In this case, rather than asking a more vague 

clarification question, as would be the case with the Unaddressed label, the 

content of the question would generally convey the system’s misunderstanding, 

which could lead to slightly more frustration on the part of the student.  This 

confusion represents approximately 0.24% of the facets. 

Finally and not surprisingly, the agreement on what you can infer a 

student knows is significantly less than the agreement on whether they have more 

explicitly expressed that understanding.  The Contra-Infr and Inferred classes 

represent a more substantial 13.2% of the total facet annotations, with their 

estimated annotation errors accounting for 6.7% of the data.  This drops to 4.9% 

when moving to the Tutor-Labels, (i.e., 1.8% of the confusion is with similar 

labels, largely Expressed instead of Inferred).  Combined the confusion between 

Inferred and either form of Contradiction and between Contra-Infr and any label 

indicating the student understood the facet, accounts for only 0.14% of the data.  
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These confusions will frequently result in poor dialog decisions, but their 

infrequent occurrence should mitigate the issue.  The most common confusions 

for Inferred and Contra-Infr, representing about 4.8% of the total facet 

annotations, are with Unaddressed and Diff-Arg, which will each have similar 

tutoring effects.  Many of these errors represent ambiguous student answers.  

Given the reference answer, There will be more deposition… Deposition will 

include larger materials, the ambiguous student answer The deposition is 

bigger… can lead to disagreements on which facet is Unaddressed and which is 

Expressed or Inferred between NMod(deposition, more) and NMod(materials, 

larger).   

My belief with Contra-Infr and Inferred facets is that when an effective 

probabilistic classifier is trained on these examples, the system’s probability 

estimates will have small margins between the confusable classes when it makes 

the wrong prediction.  In this case, the probability estimates can drive effective 

dialogue, for example, by gently asking clarification questions when it believes 

the student did not address the issue or by paraphrasing what it thought the 

student said during its transition to another question when it infers the student did 

understand the facet.  In cases where the system’s classification was wrong, the 

answer paraphrasing approach would have the effect of clarifying the student’s 

understanding without forcing the larger fraction of students that were correct to 

repeat or paraphrase themselves a potentially frustrating number of times.   

The more important source of errors comes from the classes where 

annotators had substantial agreement, primarily between Expressed, Contra-Expr, 
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and Unaddressed (Assumed is similar to Inferred, discussed above).  One might 

think that disagreement between those facets labeled as contradicted and those 

labeled as understood should be rare, but it turns out that there are numerous 

reasons why this is not the case.  First, there are ambiguous student answers, 

where two annotators’ could have very different interpretations, one suggesting 

the student understands a facet and the other contradicting it.  Second, there are 

answers that are neither ambiguous nor self contradictions, but yet imply an 

understanding at some level, and simultaneously a misunderstanding related to the 

same facet.  For example, given the reference answer Earth materials settle out 

during deposition and the student answer During deposition earth materials 

would get carried away to a new location, it is not obvious how to annotate the 

facet Theme(settle out, materials).  On the one hand, the student indicates that 

there is a final destination for the materials in the phrase to a new location, which 

is consistent with this facet and would merit an Inferred label.  On the other hand, 

the student is focusing on the materials being carried away, rather than on them 

settling, which could imply confusion between deposition and erosion.  The third 

and probably most common source of confusion between these labels results 

because it is not always clear which facet or set of facets should be labeled as 

contradicted.  Consider the reference answer Overly Orange takes fewer drops to 

change the color of indophenol so Overly Orange has a higher concentration of 

vitamin C and the student answer I think that the Overly Orange and the Luscious 

Lemon do not contain a higher concentration because they clear the indophenol 

fast.  Here, one annotator said the facet Have(Overly Orange, concentration) was 
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contradicted; whereas, the second annotator labeled it Expressed, but labeled both 

NMod(concentration, higher) and NMod_of(concentration, C) as contradicted.  

The word not modifies contain in the student’s answer, which is consistent with 

the first annotator’s choice, but it seems more logically attached as not higher, 

which is consistent with part of the second annotator’s decision.  Similarly, given 

a question about how you know which mineral is harder based on the scratch test, 

the reference answer fragment The harder mineral will leave a scratch on the less 

hard mineral and the student answer Whichever one got scratched, you could 

either decide that the implied modifiers soft and hard were reversed and annotate 

the two associated facets as Contradicted, with the others Expressed and Inferred, 

or you could consider the action of leaving a scratch to be contradicted and label 

its two associated facets contradicted, with the above modifiers being Inferred in 

this context.  This alternative labeling would result in four disagreements where 

one annotator says a facet is Contradicted and the other says it is Understood. 

One of the most common sources of annotator error appears to be a bias 

on the part of annotators toward labeling facets as Unaddressed when, overall, the 

student did not answer the question correctly.  This is corroborated by the fact that 

there are more than twice as many annotator errors in Table 10 where the 

annotator chose Unaddressed rather than Expressed or Contra-Expr as there are 

inverse errors.  For example, given the reference answer fragment “… A steeper 

slope makes the water flow faster. Faster flow moves more earth materials, 

increasing erosion.” and the student answer I think the slope flatter the water 

would come down really fast”, both annotators and the adjudicator labeled the 
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NMod(Faster, flow) facet as unaddressed, despite the fact the student clearly 

states the water would come down really fast.  When the student has a better 

overall understanding, they are more likely to label the facets Expressed, as they 

did for the above facet given this answer, Because the more water going at a 

faster pace because of the slopes will cause more erosion because gravity will 

help slope.  For the reference answer The clay particles are lighter or smaller and 

are therefore carried farther by the water, so the clay particles end up the 

greatest distance away from the mouth of the river, annotators were very likely 

to label the bold face facet as Expressed if the student indicated a large distance 

and Unaddressed if they indicated a short distance.  Similarly, if the student was 

correct and mentioned clay, annotators were inclined to give them credit for clay 

particles; whereas, if the student mentioned clay, but there were significant faults 

in their answer, the annotators labeled clay particles as Unaddressed. 

Another common source of annotation errors is that taggers were generally 

very reluctant to draw inferences about the student’s understanding unless it was 

stated fairly explicitly.  This too is supported by Table 10 in that there are roughly 

2.5 times as many errors where the annotator chose Unaddressed rather than 

Inferred or Contra-Infr as there are of the inverse errors.  For example, given the 

reference answer, Colored all the places on the map where the paperclip only 

went in a short distance. These places are the shallow parts of the harbor. The 

channel for the ships cannot go over any of the shallow areas. and the student 

answer When to paperclip went in all the way I drew one notch and when it did 

not go in. I went back and erased and went another way until I reached the dock, 
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annotators labeled some facets Unaddressed even though the student seems to 

understand the principles.  However, it is also the case that seemingly trivial 

inferences are often missed unless the key words are present.  For example, given 

the reference answer fragment … The earth materials form a delta when the 

materials are dropped off or deposited when the water stops flowing at the mouth 

of a river and the student answer A delta is formed when water is deposited, both 

annotators and the adjudicator labeled the facet Theme(deposited, materials) as 

Diff-Arg, as they should, but all three also labeled the redundant facet 

Theme(dropped off, materials) as Unaddressed.   

Annotators also seem to forget the context of the question and often give 

the student too much credit for simply repeating stated information.  For example, 

given the question, Kate said: ‘An object has to move to produce sound.’ Do you 

agree with her? Why or why not? and the reference answer Agree. Vibrations are 

movements and vibrations produce sound, student answers such as I do agree 

with her because a object has to move to make a sound often resulted in 

significant credit despite their lack of any information from outside the question, 

other than the agreement. 

Inter-annotator agreement on the fine-grained labels varied 2.4% among 

the annotators.  It ranged only 0.9% on the Tutor-labels, with the exception of one 

stand-out annotator, whose agreement was 2.5% higher than the lowest 

agreement.  Investigating the effect of the number of facets on the fine-grained 

ITA (see Fig. 11), there is no clear trend in the agreement.  I anticipated that 

agreement would fall off when annotators were tasked with passing judgments on 
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a much larger set of facets, but the graph does not indicate this.  However, 

students tend to address a significantly smaller percentage of the facets in longer 

reference answers, which presumably makes it easier for annotators to agree on 

many of the Unaddressed facets.  This would imply that the agreement on other 

labels probably does drop.  The more surprising finding is that agreement is much 

lower for the facets that occur alone in a reference answer.  There were three such 

reference answers: the bulb will light, the motor will run, and moves back-and-

forth.   

 
Fig. 11. Inter-annotator agreement by number of facets in the reference answer 

Fine-grained agreement varied substantially based on the facet’s thematic 

role, as can be seen in Fig. 12, ranging 28.5% from Value with an agreement of 

64.2% (Actor, at only 36.8% agreement, had only a single reference answer facet) 

to Purpose with an agreement of 92.7%.  Dropping the four extremes at each end, 

the range reduces to 8.7%.  Similarly, average agreement varied widely depending 

on the science module (Fig. 13), with a high of 87.7% for the Physics of Sound 
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module on which annotators were trained extensively, to 85.1% for Structures of 

Life, the second highest agreement, down to 71.3% on the module with the worst 

agreement, Food and Nutrition (Magnetism and Electricity had the lowest 

agreement on the Tutor-labels, at 81%).   

 
Fig. 12. Inter-annotator agreement by the facet type label 

 
Fig. 13. Inter-annotator agreement by science module 
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9.6.2 Resolving High Priority Annotation Issues 

Future work should include a more thorough analysis of the disagreements 

between facets labeled contradicted versus understood.  It might be possible to 

find patterns that would result in more consistent annotation and thus, more 

importantly, more effective tutoring strategies.  There are few enough of these 

disagreements, around 729, that it would not be too arduous a task to modify them 

if a more consistent strategy emerges.  It is tempting to write these errors off as 

too low a frequency to matter, but these are perhaps some of the most important 

issues to detect and address in the tutoring session.  Another means of addressing 

these issues might be to supplement the current fine-grained annotation with a 

secondary annotation that addresses student understanding at a higher 

propositional level.   

In fact, the first version of the annotation guidelines involved annotating 

the lower-level facets based on their more literal expression and then providing an 

appropriate overriding annotation at the propositional level where the 

combination of lower-level annotations was inconsistent with the overall 

interpretation of the answer.  For example, given the reference answer A longer 

string produces a lower pitch and the student answer A shorter string produces a 

higher pitch, the facets NMod(string, longer) and NMod(pitch, lower) would be 

labeled contradicted, but a higher proposition-level annotation would indicate that 

in fact the student understood the concept.  However, this approach was 

abandoned since it proved to be too challenging of an annotation task, with the 

first annotator never making use of the option. 
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9.6.3 Beyond the Reference Answer 

Long term, other aspects of the students’ understanding that do not 

directly relate to the reference answer should also be annotated.  Consider 

example (7), in addition to the issues already annotated, the student contradicts a 

law of physics that they have surely encountered elsewhere in the text, 

specifically that longer strings produce lower, not higher, pitches.  Under the 

current annotation scheme this is not annotated, since it does not pertain directly 

to the reference answer, which has to do with the effect of string tension rather 

than length.  Another example of this issue is seen in a question asking what will 

happen if a switch is flipped in one direction given a circuit with a switch that can 

either turn on a motor or a light, but not both.  The reference answer is The bulb 

will light and the student answer is I will start the motor and light.  Here the 

student expresses the facets of the reference answer, but clearly does not 

understand the circuit concepts being tested.   

In other annotation plans, it would be very useful for training learning 

algorithms if there is an indication of which student answer facets play a role in 

each annotation decision.  However, I believe this alignment can be done through 

a combination of unsupervised, semi-supervised and active learning, avoiding the 

need for further extensive human annotation. 

9.7 Annotation Conclusions 

The goal of this fine-grained classification is to enable more effective 

tutoring dialog management.  The additional labels facilitate understanding the 
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type of mismatch between the reference answer and the student’s answer.  

Breaking the reference answer down into low-level facets enables the tutor to 

provide feedback relevant specifically to the appropriate facet of the reference 

answer.  For example, given the reference answer In the morning the Sun is in the 

east so shadows point west. In the afternoon the Sun is in the west so shadows 

point east. and the student answer This happens because in the morning the sun 

rises north that is why the bus points in the street. The bus points the opposite 

direction, because the sun sets west., the feedback to the dialogue system would 

indicate that the student contradicted the facet emphasizing the direction of the 

sunrise.  It could then explore this specific issue, rather than asking another 

general question. 

This annotated corpus will benefit researchers in other domains as well.  

In the question answering domain, this facet-based classification would allow 

systems to accumulate entailing evidence from a variety of corroborating sources 

and incorporate answer details that might not be found in any single sentence.  In 

other applications outside of the tutoring domain, this fine-grained classification 

can also facilitate more directed user feedback.  For example, both the additional 

classifications and the break down of facets can be used to justify entailment 

system decisions.   

The corpus described in this chapter, which should be released in the first 

quarter of 2008, represents a substantial contribution to the automated tutoring 

and entailment communities, including 144,716 facet entailment annotations.  By 

contrast, three years of RTE challenge data comprise fewer than 4600 entailment 
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annotations.  There is no other publicly available corpus of elementary school 

children’s answers to any form of education questions.  More importantly, this is 

the only corpus, with learners of any age, which provides entailment information 

at the fine-grained level described in this thesis.  This will enable application 

development that was not practical previously. 

In the remainder of this thesis, I detail how I use the fine-grained 

annotations described in this and preceding chapters to train a classifier to 

automatically assess students’ understanding of reference answers. 
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10 Assessment Technology 

In this chapter, I describe the initial strategies for assessing a student’s 

understanding of individual reference answer facets.  The following chapters 

present experimental results and discuss plans for future work.  A high-level 

description of the system classification procedure is as follows.  Start with the 

hand-generated reference answer facets described in chapter 8, which are similar 

to typed dependency triples.  Generate automatic parses for the reference answers 

and the student answers.  Then for each student answer, generate a training (or 

test) example for each facet of the associated reference answer.  These examples 

are comprised of features extracted from the reference and student answers, their 

dependency parses, and the relation between these.  Finally, train a machine 

learning classifier on the training data and use it to classify the unseen examples 

in the test sets according to the labels described previously in Table 6. 

10.1 Preprocessing and Representation 

Many of the machine learning features described here are based on 

document co-occurrence counts.  Rather than use the web as my corpus (as did 

Turney (2001) and Glickman, Dagan and Koppel (2005), who generate analogous 

similarity statistics), I use three publicly available corpora totaling 7.4M articles 

and 2.6B indexed terms.   

English Gigaword: English Gigaword (Graff 2003) is newspaper text 

from five sources ranging from 1995-2004.  It consists of about 5.7M news 

articles and 2.1B words on a wide variety of subjects.  This resulted in documents 
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with an average of around 375 indexed tokens.  This corpus comprises 77% of the 

total documents and 83% of the total indexed words. 

Reuters Corpus Volume 1: The Reuters corpus (Lewis et al. 2004) 

consists of one year of Reuters newswire from 1996-1997.  It provided 0.8M 

articles and 0.17B indexed words, averaging 213 words per article. 

TIPSTER: The three volume TIPSTER corpus includes documents from 

a variety of sources, including newspaper text, and ranges from 1987-1992.  It 

provided 0.9M articles and 0.26B indexed words, averaging 291 words per article. 

These corpora are almost exclusively drawn from the news domain, 

making them less than ideal for assessing student’s answers to science questions.  

This will be addressed in the future by indexing more relevant information drawn 

from the web.  However, the use of these corpora will provide support for the 

hypothesis that domain-independent assessment is feasible. 

The above corpora were indexed and searched using Lucene, a publicly 

available Information Retrieval tool.5  Two indices were created, the first using 

Lucene’s StandardAnalyzer and the second adding their PorterStemFilter which 

replaces the surface form of words with their lexical stem (e.g., vibrate, vibrates, 

vibrated, and vibrating are all mapped to the same stem).  Each index excludes 

only three words, {a, an, the}.  However, when referring to content words in the 

feature descriptions that follow, Lucene’s standard stop-word list is utilized, with 

the exception of removing the words no and not from their list. 

                                                

5 http://lucene.apache.org/ 
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There are several natural language processing steps that must be 

performed before I ultimately extract features to train the machine learning 

classifiers.  First, the answers must be processed by a classifier that performs 

sentence segmentation.  Then the text of sentences is tokenized, breaking it into 

the discrete linguistic units (e.g., words, numbers, punctuation) required by 

downstream algorithms.  Next, the tokenized sentences are processed by a part-of-

speech (POS) tagger.  Finally, the POS-tagged sentences are provided as features 

to generate dependency parses of the reference answers and student answers using 

MaltParser (Nivre et al. 2007).  These parses are then automatically modified to 

increase the semantic content of the dependencies. 

First, auxiliary verbs and their modifiers are reattached to the associated 

regular verbs.  In the example in Fig. 14, this involves reattaching the modal 

would, its subject ring, and the verb modifier not to the main verb stick, making it 

the new root of the dependency tree.  Prepositions are incorporated into the 

dependency relation labels following Lin and Pantel (2001b).  In the example, this 

results in nail being reconnected to stick and setting its relation type to VMod_to, 

the conjunction of the preposition’s relation type, VMod, and the preposition 

itself.  Likewise, the copula is in the subordinate clause is also reattached to stick 

and is given the relation type VMod_because.  Then copulas are incorporated into 

the dependency relations; the non-subject modifiers of the copulas are reattached 

to the subject and the relation type between the predicate and subject is updated to 

incorporate the copula.  In the example, this means iron and the second instance 

of not are both reattached to the second instance of ring.  The relation type 
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connecting iron to ring is set to Copula_be_prd, reflecting its original predicate 

role and the incorporation of the copula is.  In a similar modification, negation 

terms are appended onto the relevant dependency relations.  In the example, both 

instances of not are appended to the dependency relation types of each of their 

siblings.   

 
Fig. 14. Example dependency parse tree transformation from top to bottom 

These modifications increase the likelihood that terms carrying significant 

semantic content are joined by dependencies that will be the focus of later feature 

extraction.  For example, in Fig. 14, rather than maintaining the semantically 

empty dependencies Sub(would, ring), VMod(would, not) and VC(would, stick), 

the transformation results in the much more meaningful dependency 

Sub_not(stick, ring).  Similarly, the set of dependencies Sub(is, ring), VMod(is, 

not), and Prd(is, iron), each of which have little meaning in isolation, are reduced 

to the single dependency Copula_be_prd_not(ring, iron), which carries far more 

significance.  The importance of these transformations will become clearer in later 

sections where features are extracted from these dependency trees. 
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Lexical Features 

Gov/Mod_MLE: The lexical entailment probabilities for the reference answer 
facet’s governor and modifier following (Glickman, Dagan and Koppel 2005; 
see also, Turney 2001) 

Gov/Mod_Match: True if the governor’s (modifier’s) stem has an exact match 
in the learner answer 

Subordinate_MLEs: The lexical entailment probabilities for the primary 
constituent facets’ governors and modifiers when the facet in question 
represents a relation between propositions 

Syntactic Features 

Gov/Mod_POS: The part of speech (POS) tags for the facet’s governor and 
modifier 

Facet/AlignedDep_Reltn: The dependency or role type labels of the facet and 
the aligned learner answer dependency 

Dep_Path_Edit_Dist: The edit distance between the dependency path 
connecting the facet’s governor and modifier and the path connecting the 
aligned terms in the learner answer 

Other Features 

Consistent_Negation: True if the facet has a negation and the aligned learner 
dependency path has a single negation or if neither have a negation 

RA_CW_Cnt: The number of content words in the reference answer, 
motivated by the fact that longer answers were more likely to result in spurious 
alignments 

Table 11. Machine learning feature descriptions  

10.2 Machine Learning Features 

I investigated a variety of linguistic features and settled on the features 

summarized in Table 11, informed by training set cross validation results from a 

Decision Table (Kohavi 1995).  Many of the features dropped provided 

significant value over the simple lexical baseline, but did not improve on the more 
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informative features described here.  However, I only describe in detail these final 

features, which provide a solid initial system performance.  The features assess 

lexical similarity via part of speech (POS) tags, lexical stem matches, and lexical 

entailment probabilities following (Turney 2001; Glickman, Dagan and Koppel 

2005).  They include dependency parse information such as relevant dependency 

relation types and path edit distances.  Other features include information about 

polarity among other things.  In the rest of this section, I describe some aspects of 

these features in more detail; this description can safely be skipped on a first 

reading. 

Gov/Mod_MLE: The reference answer facets are comprised primarily of 

the governing term and its modifier derived from semantic and syntactic 

dependencies, as discussed in chapter 8.  For example, given the reference answer 

A paperclip is harder than a penny, the facets extracted are Be(paperclip, harder) 

and AMod_than(harder, penny).  The core features assess the likelihood that 

these two terms, the governor and modifier – harder and penny in the preceding 

facet, are discussed in the learner’s answer.  The features come primarily from the 

lexical entailment calculations in (Glickman, Dagan and Koppel 2005).  Here a 

lexical entailment probability is derived from maximum likelihood estimates 

(MLEs) based on corpus co-occurrence statistics.  For a single content word w 

from the reference answer r, their method estimates the probability of lexical 

entailment as: 
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where Trw is the truth value of w, l is the learner answer, v represents a word in l, 

nv is the number of documents in a predefined corpus in which v occurs (this 

corpus included GigaWord, Reuters, and Tipster in this thesis), nw,v is the number 

of documents in which w and v co-occur, and the truth value or entailment of w is 

assumed to be determined primarily by the single aligned word from l that 

maximizes this estimate.  (Glickman, Dagan and Koppel apply these methods in 

the RTE challenge, not to learner answer assessment; the reference answer takes 

the role of the RTE hypothesis and the learner answer takes the place of the RTE 

text.)  This value is the maximum likelihood estimate that the reference answer 

term w will occur in a random document given that the document contains the 

learner answer term v.  Rather than consider this a lexical entailment probability, I 

simply look at it as evidence for the relation of the two words and let the machine 

learning algorithm decide its role and significance.   

Turney applied this metric, calling it PMI-IR, to solve the Test of English 

as a Foreign Language (TOEFL) synonym task (2001).  PMI-IR outperformed 

Latent Semantic Analysis in Turney’s experiments, which in turn achieved results 

that were statistically as good as the performance of college-aged non-native 

English speakers on the questions evaluated (Landauer and Dumais 1997).   

Given the reference answer A paperclip is harder than a penny and the 

student answer I know because a penny is softer than a paperclip, the content 

words of the reference answer are paperclip, harder, than, and penny, which align 

with paperclip, softer, than, and penny respectively from the learner answer.  The 

exact matching terms are all given co-occurrence probabilities of 1.0.  The word 
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co-occurrence probability of the remaining alignment, harder to softer, is 

nharder,softer / nsofter = 457 / 11978 = 0.038.  Since these estimates are subject to 

significant variance depending on, among other things, nv – the number of 

documents in which the potentially entailing word occurs, I expose this count to 

the classifier so that it can learn how much to trust the estimates.  Including this 

and similar features that are indicative of the validity of co-occurrence statistics 

appeared to help in the RTE challenge (Nielsen, Ward and Martin 2006), but in 

evaluating the student answers, did not seem to provide additional value 

according to feature selection.  Two sets of these co-occurrence lexical similarity 

features were generated for each of the governing term and the modifier.  The first 

set was based on the surface morphological form of the words and the second set 

was based on their stems.   

Glickman et al. take the product of the lexical entailment probability over 

all content words to generate a single entailment probability for the hypothesis: 

 

One weakness of this product function is that longer hypotheses (reference 

answers) result in lower entailment probabilities.  Therefore, in the RTE 

challenge, in addition to the product I also included features for the average and 

the geometric mean of the probabilities.  These features were included here as 

well, under the assumption that the less the learner answer addresses overall, the 

less likely it is that they understand any given facet of the reference answer.  
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These features all seemed to add value in the RTE challenge task, but did not 

appear to be helpful in assessing student answers.  

Gov/Mod_Match: Boolean features were included indicating whether 

there was an exact match for the governor and modifier in the learner answer.  

These are essentially redundant with the Gov/Mod_MLE features, since they are 

true precisely when the MLE features are 1.0 and false otherwise.  The rationale 

for including such features is that it might simplify the machine learning 

algorithm’s task.  This appears to be the case as some of these features were 

chosen in the feature selection. 

Subordinate_MLEs: When the reference answer facet represents a 

relation between higher-level propositions, I include estimates of the dependency, 

governor, and modifier co-occurrence MLEs for up to two facets associated with 

the propositions headed by each of the governor and modifier of the current facet.  

For example, consider the reference answer fragment The string is1 tighter, so the 

pitch is2 higher and its causal facet Cause_so(is2, is1).  Here, the causal facet 

relates the proposition the pitch is higher to its cause, the string is tighter, which 

each consist of a single facet, Be(pitch, higher) and Be(string, tighter) 

respectively.  The feature set for the causal facet includes dependency co-

occurrence MLEs for each of these facets, plus lexical co-occurrence MLEs for 

the governor and modifier in each of these facets.  The dependency co-occurrence 

MLEs are estimated just as with the lexical co-occurrence MLEs, but replacing 

the simple occurrence of a word with the occurrence of both terms in the facet (or 

the aligned learner answer dependency) in the same sequence as they occur in the 
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reference answer and within the same number of words (see Nielsen, Ward and 

Martin 2006 for details). 

Gov/Mod_POS: The part of speech of both the facet’s governor and its 

modifier are included in the feature set. 

Facet/AlignedDep_Reltn: The facet relation label and its aligned 

dependency type are also included as features.  Reference answer facets are 

aligned to dependencies from the learner answer using the dependency co-

occurrence MLEs described previously for Subordinate_MLEs. 

Dep_Path_Edit_Dist: For each term in the reference answer facet the N 

best alignments to the learner answer are found based on the lexical co-occurrence 

MLEs (N=5 in the later experiments).  Then for each learner answer word aligned 

to the facet’s modifier, I find the path through the dependency tree to each word 

aligned to the facet’s governor.  Likewise, the path through the reference answer 

dependency parse that connects the facet’s modifier and governor is computed.  

This path is not necessarily a single step due to parser errors and the construction 

of facets that do not represent typical syntactic dependencies.   

Edit distances are calculated between the reference answer path and each 

of the aligned learner paths.  The paths include the dependency relations with 

their attached prepositions, negations, etc, the direction of each dependency, and 

the POS tags of the terms along the path. The calculation applies heuristics to 

judge the similarity of each part of the path (e.g., dropping a subject had a much 

higher cost than dropping an adjective).  The value of the Dep_Path_Edit_Dist 

feature is the lowest magnitude edit distance. 
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Consistent_Negation: This is a Boolean feature, which is true if the facet 

included a negation and the aligned learner dependency path included a single 

negation.  It is also true when neither the path nor the facet had any negations.  

Otherwise, it is false. 

RA_CW_Cnt: Since longer reference answers are more likely to generate 

spurious alignments and less likely to be addressed in their entirety, the number of 

content words in the reference answer is included as a feature for the learning 

algorithm. 

10.3 Classification Approach 

The feature data was split into a training set and three test sets.  The first 

test set, Unseen Modules, consists of all the data from three of the sixteen science 

modules (Environment, Human Body and Water), providing what is loosely a 

domain-independent test set of topics not seen in the training data.  The second 

test set, Unseen Questions, consists of all the student answers associated with 

twenty two randomly selected questions from the 233 questions in the remaining 

thirteen modules, providing a question-independent test set from within the same 

domain or topic areas seen in the training data.  (Though the specific questions 

selected were random within a module, the number of questions selected from 

each module was proportional to the original distribution of questions.)  The third 

test set, Unseen Answers, was created by randomly assigning all of the facets 

from approximately 6% of the remaining learner answers to a test set, with the 

remainder comprising the training set.   
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All of the data in the Unseen Modules test set has been adjudicated; 

whereas, about half of the remaining data (training data, Unseen Questions and 

Unseen Answers) has not been adjudicated.  I used the most recent annotation of 

the unadjudicated data for the experiments presented here.  Today’s automated 

tutoring systems know in advance the questions, reference answers, and what 

information a student should be assumed to understand a priori whether based on 

the question context or because it is trivial background knowledge.  This is 

equivalent to the Unseen Answers test set; so, in that scenario, it clearly does not 

make sense to include the facets tagged as Assumed in the test set for the 

classifier.  The long term goal is for the ITS to generate its own questions, in 

which case it will be useful to classify facets that should be assumed to be 

understood a priori.  This has been left for future work, so all Assumed facets 

were withheld from the data sets in the present experiments.  This selection 

resulted in a total of 54967 training examples, 30514 examples in the Unseen 

Modules test set, 6699 in the Unseen Questions test set, and 3159 examples in the 

Unseen Answers test set.   

I evaluated several machine learning algorithms and C4.5 (Quinlan 1993) 

or Random Forests (Breiman 2001) achieved the best results in cross validation 

on the training data.  Therefore, they were used to obtain results for this new task 

of automatically annotating low-level reference answer facets with fine-grained 

classifications. 
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10.4 Evaluation Metrics 

In addition to accuracy (the percent of facets classified the same as the 

gold-standard human annotation), in some experiments I present the confidence 

weighted score (CWS).  CWS provides an indication of the quality of the 

classifier’s confidence judgments.  Loosely speaking, classifiers that are correct 

more often on their higher confidence judgments score better on CWS.  The 

chance value for CWS is equal to the classification accuracy.  It is computed after 

ranking examples according to the classifier’s confidence, from most to least 

confident.  Then the CWS is calculated as the average over the system's precision 

values up to each point in the ranked list: 

 

where n is the number of examples (answer facet annotations) in the test set, i 

ranges over the examples sorted by decreasing confidence in the classification, 

and δ(z) is an indicator function (1 if z is true and 0 otherwise), so the embedded 

fraction is the precision through the ith example. 
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11 RTE Experiments 

11.1 Experimental Design 

In prior work, a similar technique was applied to the PASCAL 

Recognizing Textual Entailment challenge (Nielsen, Ward and Martin 2006).  The 

RTE datasets are composed of text-hypothesis entailment pairs (see Fig. 3 above) 

derived from several different task domains.  The goal is to determine whether the 

hypothesis is entailed by the text.  In the first RTE challenge, the task domains 

included Information Extraction (IE), Information Retrieval (IR), Question 

Answering (QA), Machine Translation (MT), Paraphrasing (PP), Reading 

Comprehension (RC), and Comparable Documents (CD – similar to Multi-

document Summarization).  In the second RTE challenge, the task domains 

included IE, IR, QA, and SUM (Multi-document Summarization).  Each dataset is 

balanced such that 50% of the pairs are entailed and 50% are not entailed.  The 

RTE1 training set is approximately 570 examples and the test set is 800 examples.  

The RTE2 training and test sets are each comprised of 800 examples, 200 for each 

task type. 

In these experiments, the dependency and word co-occurrence statistics 

were extracted across all content words and combined in product and average 

features.  Similar features were extracted to expose the coverage of the 

dependency subtrees rooted at each verb, subject, object, and other critical 

arguments (see (Nielsen, Ward and Martin 2006) for complete details of these and 

other features).   
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A mixture of experts consisting of machine learning classifiers from the 

Weka package (Witten and Frank 2000) was trained with the final classification 

by a simple majority vote.  A confidence estimate was computed based first on 

the number of votes and, in the case of ties, by averaging the probability estimates 

output by the classifiers, which were normalized to be consistent with the 

classifiers’ accuracy on training set cross-validation.  For the RTE2 dataset, one 

classifier was trained for the multi-document summarization, SUM, subset of the 

data utilizing both the RTE2 SUM training data and the RTE1 CD data and a 

second classifier was trained for the IE-IR-QA (NonSUM) portion of the data 

utilizing only the associated RTE2 training data, since this resulted in better 

performance during cross-validation on the training sets.  Similarly, for the RTE1 

dataset, two classifiers were trained.  A CD classifier was trained strictly on the 

RTE1 CD training set and a NonCD classifier was trained on the remainder of the 

RTE1 training set.   

11.2 Results 

Table 12 shows the results on the RTE1 and RTE2 test data.  On the RTE2 

dataset, in addition to the simple accuracy (percent correct), the average precision 

was calculated, which provides an indication of the quality of the classifier’s 

confidence judgments.  Average precision is calculated the same as the 

confidence weighted score (see section 10.4) except that the precision is only 

averaged over the points in the confidence-ranked list where the actual class value 

is true (entailed).  For comparison, Table 13 breaks the results into the subsets 
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corresponding to the two classifiers.  It shows test set results, results from cross-

validation on the training sets, the best accuracy for a full submission by anyone 

at the RTE challenges (Dagan, Glickman and Magnini 2005; Glickman, Dagan 

and Koppel 2005; Bar-Haim et al. 2006), and the median accuracy of all full 

submissions.   

 SUM/CD IE IR QA MT PP RC All 

RTE1 Accuracy 83.3 49.2 60.0 62.3 63.3 48.0 53.6 61.8 

RTE2 Accuracy 70.0 55.5 64.0 55.0 n/a n/a n/a 61.1 

RTE2 Ave Prec. 80.7 49.4 73.0 57.3 n/a n/a n/a 65.2 

Table 12. System Accuracy and Average Precision by Task 

 SUM / CD Non-SUM/CD Overall 

RTE1 Training Set CV 83.7 56.9 61.6 

RTE1 Test Set 83.3 56.8 61.8 

Best RTE1 Submission 83.3 52.8 58.6 

Median RTE1 Submission 77.7 49.5 55.2 

RTE2 Training Set CV 84.5 62.7 68.1 

RTE2 Test Set 70.0 58.2 61.1 

Best RTE2 Submission 84.5 72.3 75.4 

Median RTE2 Submission n/a n/a 58.3 

Table 13. System Accuracy by Dataset or Submission 
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11.3 Discussion 

To get a fair comparison with the RTE1 results I trained strictly on the 

RTE1 training set and tested on the RTE1 test set.  As can be seen in Table 13, 

this system outperformed the submission with the best accuracy at the RTE1 

challenge by 3.2%.  One RTE1 task, CD, is relatively easy; this system did as 

well as all but one submission on that task.  The non-CD portion of the dataset is 

very challenging to classify.  The best non-CD accuracy submitted to RTE1 was 

52.8%, where the accuracy for this system was 4.0% higher at 56.8%.  Of the 23 

teams in RTE2, this system was among the top ranked systems in both average 

precision (5th) and accuracy (6th).  Only the LCC systems, which trained on three 

orders of magnitude more data, showed a statistically significant improvement. 
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12 Experiment One 

12.1 Experimental Design 

In the first experiment, the intent was simply to provide evidence that a 

machine learning algorithm could perform reasonably above chance on the task of 

determining the extent to which elementary school kids understood the low-level 

facets of the reference answers.  The features used were the term co-occurrence 

maximum likelihood estimates and related features that provided information 

regarding the statistical validity of the former.  Specifically, the MLE was 

calculated for the facet’s governor and modifier, based separately on the surface 

form of the words and their stems; the product, average and geometric mean of 

the MLEs over all of the reference answer content words were also included to 

provide an indication of the learner’s overall understanding. 

Following the RTE challenge, in this initial investigation, I considered 

only examples that were given moderately consistent labels by all three annotators 

(Dagan, Glickman and Magnini 2005, only retained entailment pairs where 

annotators agreed unanimously and another judge considered the pairs to be 

reasonable).  Specifically, I used the adjudicated labels of facets where all 

annotators believed the student understood the facet (i.e., labeled the facet 

Expressed or Inferred), all annotators felt the student contradicted the facet (i.e., 

labeled the facet Contra-Expr, Contra-Infr or Self-Contra), the adjudicator and at 

least one annotator chose Diff-Arg, and facets that all annotators labeled 

Unaddressed.  Given the fraction of the dataset that was annotated at the time of 
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conducting these experiments, this selection resulted in a total of 7273 training 

examples, 7719 examples in the Unseen Modules test set (the domain-

independent test set collected from very different science modules than were 

included in the training data), 1239 examples in the Unseen Questions test set 

(answers to questions not used in the training set, but that were from the same 

science modules) and 424 examples in the Unseen Answers test set (different 

answers to the same questions that generated the training set answers).  

Otherwise, I roughly followed the procedure described in chapter 10 to train a 

classifier on the training examples.  In this experiment a Random Forest classifier 

was utilized, which out of several machine learning algorithms evaluated at that 

time, achieved the best accuracy in cross validation on the training data. 

12.2 Results 

Table 14 shows the classifier’s accuracy in cross validation on the training 

set as well as on each of the test sets, Unseen Answers, Unseen Questions, and 

Unseen Modules.  Following the column headings from the corpus annotation, 

Yes-No presents the accuracy of a two-way classifier that outputs Yes for all 

facets that the classifier judged as being understood (Expressed or Inferred) and 

No for all other facets.  This effectively is the accuracy of predicting that the tutor 

should provide some sort of remediation.  The column labeled Tutor-Labels 

provides the accuracy when considering the five classes that will drive the type of 

dialogue provided by the tutor, Understood (Expressed and Inferred), 

Contradicted (Contra-Expr and Contra-Infr), Self-Contra, Diff-Arg, and 



  106 

Unaddressed.  The sub-columns first show two simpler baselines, the accuracy of 

a classifier that always chooses the most frequent class in the training set – 

Unaddressed – and the accuracy based on a lexical decision that chooses 

Understood if the stems of both the governing term and the modifier are present in 

the learner’s answer and outputs Unaddressed otherwise.  In addition to accuracy, 

I also calculate the confidence weighted score (CWS), assessing the quality of the 

classifier’s confidence judgments. 

 Yes-No Accuracy (%) Tutor-Labels Acc. (%) CWS 

 Majority 
Class 

Lexical 
Baseline 

Exp. 1 
System 

Majority 
Class 

Lexical 
Baseline 

Exp. 1 
System 

 

Training Set CV 56.5 65.2 81.9 54.0 62.9 80.3 87.9 

Unseen Answers 53.8 64.4 80.9 50.9 61.6 78.8 85.6 

Unseen Questions 64.8 73.3 69.7 62.5 71.3 68.4 78.4 

Unseen Modules 49.4 72.0 76.6 45.7 68.6 74.6 83.5 

Table 14. Exp. 1 Classifier Accuracy and Confidence Weighted Score 

12.3 Discussion 

This is a new task and new dataset.  These early results, based on a very 

simple lexical similarity approach, are very promising.  The results on the Tutor-

Labels are 27.9%, 5.9%, and 28.9% over the most frequent label baseline for 

Unseen Answers, Questions, and Modules respectively.  Accuracy on Unseen 

Answers is 17.2% better than predicting Expressed when both of the facet’s word 

stems are present and Unaddressed in all other cases, and 6% better on Unseen 

Modules.  However, this simpler lexical baseline outperforms a classifier trained 
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on the more robust lexical features by 2.9% on the Unseen Questions test set.  

Results on the Yes-No Labels, predicting that the tutor should provide some form 

of remediation, follow a similar trend.  The CWS is much higher than chance, 

indicating that the confidence (class probability estimates) output by the Random 

Forest will be useful to the dialog manager in deciding how strongly to believe in 

the classifier’s output.  For example, if the classification suggests the learner 

understood a concept, but the confidence is low, the dialog manager could decide 

to paraphrase the answer as a transition to the next question, rather than assuming 

the learner definitely understands and simply moving on and rather than asking a 

confirming question about something the learner probably already expressed.  

These confidence estimates could be improved further by following the 

techniques in (Nielsen 2004).  These results demonstrate that the task is feasible 

and with more rigorous feature engineering, the accuracy should be in a range that 

allows effective tutoring.  Even when the prediction is not correct as long as the 

tutor acts according to the confidence, no harm and little frustration should result. 
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13 Experiment Two 

13.1 Experimental Design 

In this experiment, I added the features described in Table 11 and 

followed the procedures described in chapter 10.  In short, this included the 

governor and modifier features from experiment one, the subordinate MLEs for 

inter-propositional facets, a negation consistency check, and the syntactic 

features: POS, dependency and facet relation types, and the dependency path edit 

distance.  This experiment included all of the data.  The entire Unseen Modules 

dataset was adjudicated, but only about 50% of the training data and other test 

sets was adjudicated.  Again, the facets assumed to be understood a priori were 

withheld from all of the datasets, resulting in 54967 training examples, 30514 

examples in the Unseen Modules test set, 6699 in the Unseen Questions test set 

and 3159 examples in the Unseen Answers test set.  A C4.5 decision tree was 

trained to classify examples in this experiment, since it performed best in training 

set cross validation. 

13.2 Results 

Table 15 shows the classifier’s accuracy in cross validation on the training 

set as well as on each of the test sets.  In this experiment, accuracy was only 

calculated for the labels that will drive the ITS dialogue, Tutor Labels – 

Understood, Contradicted, Self-Contra, Diff-Arg, and Unaddressed.  Again, the 

columns first show two simpler baselines, the accuracy of a classifier that always 
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chooses the most frequent class in the training set – Unaddressed – and the 

accuracy based on a lexical decision that chooses Understood if both the 

governing term and the modifier are present in the learner’s answer and outputs 

Unaddressed otherwise.  (I also evaluated placing a threshold on the product of 

their lexical entailment probabilities similar to Glickman, Dagan and Koppel 

(2005), who achieved the best results in the first RTE challenge, but this gave 

virtually the same results as the word matching baseline).  The column labeled 

Table 11 Features presents the results of the classifier using all of the additional 

features.  (Reduced Training is described in the Discussion section, which 

follows.)   

 Majority 
Label 

Lexical 
Baseline 

Table 11 
Features 

Reduced 
Training 

Training Set CV 54.6 59.7 77.1  

Unseen Answers 51.1 56.1 75.5  

Unseen Questions 58.4 63.4 61.7 66.5 

Unseen Modules 53.4 62.9 61.4 65.9 

Table 15. Exp. 2 Classifier Accuracy on the Tutor Labels 

13.3 Discussion 

Including the simple syntactic features and utilizing the full dataset, the 

results improve over the most frequent class baseline by 24.4%, 3.3%, and 8.0% 

for Unseen Answers, Questions, and Modules respectively.  Accuracy on Unseen 

Answers is also 19.4% better than the lexical baseline.  However, this simple 
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baseline outperformed the classifier on the Unseen Questions and Unseen 

Modules test sets.   

In the first experiment, the classifier beat the lexical baseline by 6% on the 

Unseen Modules test set.  It seemed probable that the decision tree had over fit the 

data due to bias in the data itself; specifically, since many of the students’ answers 

are very similar, there are likely to be large clusters of identical feature-class 

pairings, which could result in classifier decisions that do not generalize as well to 

other questions or domains.  This bias is not problematic when the test data is 

very similar to the training data, as is the case for the Unseen Answers test set, but 

would negatively affect performance on less similar data, such as the Unseen 

Questions and Modules test sets.  To test this hypothesis, I reduced the number of 

examples in the training set to about 8,000, roughly the number of training 

examples in the first experiment, and retrained the classifier.  This would result in 

fewer of these dense clusters.  The results, shown in the Reduced Training column 

of Table 15, were improvements of 4.8% and 4.5% on the Unseen Questions and 

Modules test sets, respectively.  In the future, I will find a principled means of 

deciding how much training data and, more specifically, what the make up of the 

training data should be to optimize generalization to other domains. 

13.4 Feature Analysis 

Table 4 shows the impact, based on training data cross-validation, of each 

feature relative to the 54.63% baseline accuracy of always predicting the facet is 

Unaddressed – the most frequent class in the training set (for this column, the 
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feature indicated was the only one used by the classifier) and relative to the 

77.05% accuracy of a classifier built using all of the features in Table 11 (for this 

column, the feature indicated was the only one withheld from the learning 

algorithm’s feature set).  Positive values in the latter column indicate that the 

feature hurt the classifier’s ability to generalize to held-out cross-validation data.   

Feature Added or 
Removed 

Change from Majority 
Class Baseline (54.63%) 

Change from All 
Features (77.05%) 

Gov_MLE 12.97 -0.71 

Mod_MLE 12.06 -0.32 

Gov_Match 8.10 -0.04 

Mod_Match 10.14 +0.03 

Gov_Facet’s_Gov_MLE 0.67 +0.08 

Gov_Facet’s_Mod_MLE 0.50 +0.03 

Mod_Facet’s_Gov_MLE 1.12 +0.12 

Mod_Facet’s_Mod_MLE 0.91 +0.01 

Gov_POS 1.01 -0.55 

Mod_POS 1.35 -0.72 

Facet_Reltn 1.23 -0.16 

AlignedDep_Reltn - +0.78 

Dep_Path_Edit_Dist 2.97 -0.47 

Consistent_Negation - - 

RA_CW_cnt 3.87 -1.28 

Table 16. Feature Impact relative to 1) Baseline and 2) All Features 



  112 

The most informative features in classifying low-level facet understanding 

are the lexical similarity features, Gov_MLE and Mod_MLE, derived from our 

domain-independent co-occurrence statistics.  This is consistent with the ability of 

Latent Semantic Analysis (LSA) to predict understanding in the tutoring 

environment (Graesser et al. 2001); the difference is that LSA is unable to 

perform well on the sentence-length answers common in our dataset and, based 

on earlier investigations, LSA does not process young children’s utterances 

reliably.  The exact lexical match features are the second most informative 

features, but they are redundant with the preceding similarity features (they are 

true when the MLE is precisely 1.0 and false otherwise) and, therefore, seem not 

to add value to the final classifier. 

The next four features, the subordinate similarity features, were intended 

to facilitate the classification of facets that represent relations between other 

facets or higher-level propositions.  They show some marginal value relative to 

the baseline, but in combination with other features fail to improve the final 

system’s performance.  This implies that a more thorough error analysis of this 

subset of facets must be performed and an alternative approach must be designed 

for their classification.  These same features might still be appropriate if they are 

used strictly for this relational type of facet. 

The facet’s dependency relation and the POS tags of the governor and 

modifier influence how similar aligned dependencies must be to consider them a 

match; whereas, the label of the aligned dependency appears not to have any 

predictive value.  The benefit from the dependency path edit distance feature 
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suggests that deeper syntax does help assess understanding at this fine-grained 

level.  Finally, including the number of content words in the reference answer was 

motivated by the belief that longer answers were more likely to result in spurious 

alignments; further analysis shows that it is also the case that extended 

expectations are less likely to be addressed by students. 

Table 16 shows that the most salient features are simple lexical features 

(e.g., lexical co-occurrence statistics).  The simple lexical baseline in Table 15 

shows an average improvement of about 6.5% on the test sets relative to 

classifying according to the most frequent class in the training set.  Still, the 

feature analysis shows that syntactic features such as the dependency path edit 

distance, the facet type, and the POS tags are boosting performance over the 

purely lexical features.   

13.5 Error Analysis 

In order to focus future work on the areas most likely to benefit the 

system, an error analysis was performed based on the results of cross-validation 

on the training data.  Rather than using typical random selection of training 

examples into K data folds, I essentially performed leave-one-out analysis at the 

module level.  In other words, 13 classifiers were built, one for each science 

module in the training set; each classifier was tested on all of the data in a single 

science module and trained on the data from the remaining 12 modules.  This 

effectively simulates the Unseen Modules test condition.  The feature set shown 

in Table 11 was utilized to construct each C4.5 decision tree classifier. 
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13.5.1 Characterizing System Errors 

The first consideration was to get a broad characterization of errors, 

specifically, to determine to what extent system errors are affected by the way 

reference answers are written and by the type of reference answer facet.  The 

extent to which system accuracy is correlated with human performance is 

simultaneously checked.  The style of questions and reference answers was very 

different between a number of the science modules, so they represent a logical 

way to categorize the data for the purpose of assessing whether the way reference 

answers are written affects system accuracy.  In this analysis, only the seven 

science modules whose answers had been adjudicated are considered (Earth 

Materials, Ideas and Inventions, Landforms, Levers and Pulleys, Models and 

Designs, Physics of Sound, and Variables).  A chart of the accuracy and ITA for 

these modules is shown in Fig. 15.  I compared the accuracy of each module to 

the accuracy of all others combined performing a statistical test for the difference 

of two proportions.  With the exception of the two modules nearest the average 

accuracy, the difference between each module and the data from the remaining six 

appeared to be statistically significant (11.1≤χ2≤45.9, p<0.001, N=23244).  Next, I 

compared accuracy across facet relation types in a similar manner.  A chart of the 

accuracy and ITA by relation type is shown in Fig. 16.  Again, the test suggested 

that the accuracy of over two thirds of the relation types was significantly 

different than the combination of all others (4.1≤χ2≤89.9, p<0.05, N=58126).  As 

can be seen in the graphs, system accuracy is not, in general, correlated with inter-

annotator agreement.   
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Fig. 15. Classifier Accuracy vs. ITA by Science Module in Decreasing Accuracy 

 
Fig. 16. Classifier Accuracy vs. ITA by Facet Relation Type 

While several of the science modules and facet relation types appear to 

have significantly different characteristics, this should be tempered by the fact 

that each instance of a reference answer facet has approximately 40 student 

answers that were annotated relative to it and this dependence between data points 
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could affect the statistical validity.  This is exacerbated by the fact that many of 

the science modules have questions that are extremely similar leading to identical 

reference answer facets in extremely similar question contexts.  Hence, roughly 

identical facets could have 80 or perhaps over 160 annotations.  Examining just 

those facets whose type is Agent, we see that the characteristics of individual 

instances of reference answer facets themselves vary significantly from 7.5% to 

87.5% accuracy – the 20 facets with the best accuracy and the 20 with the worst 

accuracy are each statistical different from the collection of all other facets 

(5.0≤χ2≤37.9, p<0.05, N=2850).  A chart of the average accuracy associated with 

each of the 72 Agent type reference answer facets is shown in Fig. 17. 

 
Fig. 17. System Accuracy for Agent Reference Facets, ~40 Annotations Each 

13.5.2 Errors in Expressed Facets 

Next, several randomly selected examples were analyzed to look for 

patterns in the types of errors the system makes.  However, only specific 

categories of data were considered.  Specifically, only the subsets of errors that 
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were most likely to lead to short-term system improvements were considered.  

This included only examples where all of the annotators agreed on the annotation, 

since if the annotation was difficult for humans, it would probably be harder to 

construct features that would allow the machine learning algorithm to correct its 

error (although the lack of correlation between the system accuracy and ITA as 

seen in Fig. 15 and Fig. 16 suggests this might not be true).  Second, only 

Expressed and Unaddressed facets were considered, since Inferred facets 

represent the more challenging judgments, typically based on pragmatic 

inferences.  Contradictions were excluded since there was no attempt to handle 

these in the present system.  Third, only facets that were not inter-propositional 

were considered, since the inter-propositional facets are more complicated to 

process and only represent 12% of the non-Assumed data.  Expressed facets are 

discussed in this section of the thesis and Unaddressed in the next section. 

Without examining each example relative to the decision tree that 

classified it, it is not possible to know exactly what caused the errors.  The 

analysis here simply indicates what factors are involved in inferring whether the 

reference answer facets were understood and what relationships exist between the 

student answer and the facet.  I analyzed 100 random examples of errors where 

annotators considered the facet Expressed, but the analysis only considered one 

example for any given reference answer facet.  Out of these 100 errors, only one 

looked as if it was probably incorrectly annotated.  The potential error factors 

seen in the data included synonymy, hypernymy, hyponymy, meronymy, 

derivational changes, other lexical paraphrases, concept definitions, pronoun 
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resolution, noun phrase term substitution, other coreference resolution, negation, 

syntactic transformations, dependency parser problems, semantic role parsing, 

paraphrasing, logical or deep reasoning, pragmatics, and corpus-related issues.  In 

over half of the examples, there were two or more factors involved (this is 

probably an underestimate, due to focusing on the most significant or obvious 

factors involved in a given example). 

As a group, the simple lexical substitution categories (synonymy, 

hypernymy, hyponymy, meronymy, derivational changes, and other lexical 

paraphrases) appear more often in errors than any of the other factors with around 

35 occurrences.  Roughly half of these relationships should be detectable using a 

broad coverage lexical resource.  For example, substituting tiny for small, CO2 

for gas, put for place, pen for ink and push for carry (WordNet entailment).  

However, many of these lexical paraphrases are not necessarily associated in 

lexical resources such as WordNet.  For example, in the substitution of put the 

pennies for distribute the pennies, these terms are only connected at the top of the 

WordNet hierarchy at the Synset (move, displace).  Similarly, WordNet appears 

not to have any connection at all between have and contain.  Concept definitions 

account for an additional 14 issues that could potentially be addressed by a lexical 

resource such as WordNet. 

The three coreference resolution factors combined are involved in nearly 

30% of the errors.  Students use on average 1.1 pronouns per answer and, more 

importantly, the pronouns tend to refer to key entities or concepts in the question 

and reference answer.  A pronoun was used in 15 of the errors (3 personal 
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pronouns – she, 11 uses of it, and 1 use of one).  It might be possible to correct 

many of these errors by simply aligning the pronouns to essentially all possible 

nouns in the reference answer and then choosing the alignment that gives the 

learner the most credit.  However, confidence in the benefit of pronoun resolution 

has to be tempered by the fact that pronouns occurred just as frequently in a 

random sample of 300 examples that the system correctly classified as they 

occurred in 300 incorrectly classified examples.  In 6 errors, the student referred 

to a concept by another term (e.g., substituting stuff for pieces).  In 6 errors, the 

student used one of the terms in a noun phrase to refer to a concept where the 

reference answer facet included the other term as its modifier or vice versa.  For 

example, one reference answer was looking for NMod(particles, clay) and 

Be(particles, light) and the student said Because clay is the lightest, which should 

have resulted in an Understood classification for the second facet.  This type of 

error should be easily overcome by adding features that generally allow the 

substitution of any term in the noun phrase (e.g., features that output the similarity 

for the best matching word in the noun phrase).   

The three most common issues (both in isolation and in combination with 

other factors) were deep or logical reasoning, pragmatics and phrase-based 

paraphrasing.  At least one of these factors is involved in almost two thirds of the 

errors.  Examples of the first issue include recognizing that both cups have the 

same amount of water given the following student response, no, cup 1 would be a 

plastic cup 25 ml water and cup 2 paper cup 25 ml and 10 g sugar, and that two 

sounds must be very different in the case that … it is easy to discriminate…  
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Examples of pragmatic issues include recognizing that saying Because the 

vibrations implies that a rubber band is vibrating given the question context, and 

that the earth in the response … the fulcrum is too close to the earth should be 

considered to be the load referred to in its reference answer.  These two factors, 

pragmatics and logical reasoning, were involved in nearly 40% of the errors.  It is 

interesting that these are all examples that three annotators unanimously 

considered to be Expressed versus Inferred facets.  Many of the remaining errors 

were classified as involving phrase-based paraphrases.  Examples here include ... 

it will heat up faster versus it got hotter faster and in the middle versus halfway 

between.  This is an area that I intend to invest significant time in future research.  

This research should also reduce the error rate on lexical paraphrases. 

Of the remaining errors, corpus issues and negation are the only categories 

that occurred in isolation, all others were seen in combination with other factors.  

At least two errors appeared to result from corpus-related issues, the system being 

unable to resolve 3 to three and g to grams.  Many of these types of terms should 

be normalized in the corpus since the automatic speech recognition will output a 

consistent form, but it is debatable whether everything should be normalized.  

Students are unlikely to say 5 g so converting this to 5 grams is appropriate.  

However, some students are likely to say CO2, so converting this to carbon 

dioxide is more questionable.  For domain specific tutoring, this can be handled as 

a preprocessing step, but to handle new questions or topics, the system should be 

able to resolve these terms.  Six errors essentially involved negation of an 

antonym, (e.g., substituting not a lot for little and no one has the same fingerprint 
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for everyone has a different print).  While syntactic variation is certainly common 

in the data, it did not appear to be the primary factor in any of the errors.  

Semantic role labeling has the potential to provide the classifier with information 

that would clearly indicate the relationships between the student and the reference 

answer, but there was only one error in which this came to mind as an important 

factor and it was not due to the role labels themselves, but because MaltParser 

identifies only a single head.  Specifically, in the sentence She could sit by the 

clothes and check every hour if one is dry or not, the pronoun She is attached as 

the subject of could (sit), but check is left without a subject.   

Errors in the dependency parses seemed likely to be contributing to the 

system error rate.  In previous work, analyzing the dependency parses of fifty one 

of the student answers, many had what were believed to be minor errors, 31% had 

significant errors, and 24% had errors that looked like they could easily lead to 

problems for the answer assessment classifier.  Over half of the more serious 

dependency parse errors resulted from inopportune sentence segmentation due to 

run on student sentences conjoined by and (e.g., the parse of a shorter string 

makes a higher pitch and a longer string makes a lower pitch, errantly conjoined 

a higher pitch and a longer string as the subject of makes a lower pitch, leaving a 

shorter string makes without an object).  To overcome these issues, the text could 

be parsed once using the original sentence segmentation and then again with 

alternative segmentations under conditions to be determined by further 

dependency parser error analysis.  One partial approach could be to split the 

sentence when two noun phrases are conjoined and they occur between two verbs, 
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as is the case in the preceding example, where the alternative segmentation 

resulted in correct parses.  Then the system could choose the parse that is most 

consistent with the reference answer.  While I believe improving the parser output 

will result in higher accuracy by the classifier, there was little evidence to support 

this in the answer assessment system error analysis.  I only checked the parses 

when it was somewhat surprising that the classifier made an error (for example, 

when there were simple lexical substitutions involving very similar words) and 

the dependency path features looked wrong.  Only two of these classification 

errors were associated with parser errors.  Still, I believe that better parses should 

lead to more reliable (less noisy) features, which in turn will allow the machine 

learning algorithm to more easily recognize what is important. 

Finally, many of the dependency path features were completely different 

than what they should have been if the lexical alignment was right.  Given that the 

majority of parses were correct in the areas relevant to the analyzed reference 

answer facets, it is likely that the alignment is wrong.  Future plans include 

training an alignment classifier separate from the assessment classifier.  This will 

at minimum facilitate the analysis of alignments, which are key to understanding 

the learner answers. 

In closing, it should be emphasized that over half of the errors in 

Expressed facets involved more than one of the factors discussed here.  For 

example, to recognize the child understands a tree is blocking the sunlight based 

on the answer There is a shadow there because the sun is behind it and light 

cannot go through solid objects. Note, I think that question was kind of dumb, 
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requires resolving it to the tree and the solid object mentioned to the tree, and then 

making the inference that light cannot go through [the tree] entails the tree blocks 

the light. 

13.5.3 Errors in Unaddressed Facets 

Unlike the errors in Expressed facets, a number of the examples here 

appeared to be questionable annotations.  For example, given the student answer 

fragment You could take a couple of cardboard houses and … 1 with thick glazed 

insulation. …, all three annotators suggested they could not infer the student 

meant the insulation should be installed in one of the houses.  Given the student 

answer Because the darker the color the faster it will heat up, the annotators did 

not infer that the student believed the sheeting chosen was the darkest color.  

Stating a function of the elytra was horn was insufficient for the annotators to 

credit the student with understanding that it was used to make sounds. 

One of the biggest sources of errors in Unaddressed facets is the result of 

ignoring the context of words.  For example, consider the question When you 

make an electromagnet, why does the core have to be iron or steel? and its 

reference answer Iron is the only common metal that can become a temporary 

magnet. Steel is made from iron.  Then, given the student answer It has to be iron 

or steel because it has to pick up the washers, the system classified the facet 

Material_from(made, iron) as Understood based on the text has to be iron, but 

ignores the context, specifically, that this should be associated with a production, 

Product(made, steel).  Similarly, the student answer You could wrap the insulated 

wire to the iron nail and attach the battery and switch leads to the classification 
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of Understood for a facet indicating to touch the nail to a permanent magnet to 

turn it into a temporary magnet, but wrapping the wire to the nail should have 

been aligned to a different method of making a temporary magnet. 

A fair number of the errors in Unaddressed facets appear to be the result of 

antonyms having very similar statistical co-occurrence patterns.  Examples of 

errors here include confusing closer with greater distance and absorbs energy 

with reflects energy.  However, both of these also may be annotation errors that 

should have been labeled Contra-Expr. 

The biggest source of error is simply classifying a number of facets as 

Understood if there is some lexical similarity and at times some syntactic 

similarity as in the case of accepting the balls are different in place of different 

girls.  However, there are also a fair number of cases where it is unclear why the 

decision was made, as in the following case, where the system apparently trusts 

that the student understands a complicated electrical circuit based on the answer I 

learned it in class. 

My belief is that with the processes and the more informative features 

described in the previous subsection, the learning algorithm will focus on less 

noisy features and avoid many of the errors described in this section.  However, 

additional features will need to be added to ensure appropriate lexical and phrasal 

alignment, which should also provide a significant benefit here. 
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14 Discussion and Future Work 

Table 16 shows that the most salient machine learning features are simple 

lexical features (e.g., co-occurrence statistics).  The simple lexical baseline shows 

an average improvement of about 6.5% relative to classifying according to the 

most frequent class in the training set (see Table 15).  Still, error analysis suggests 

that additional features related to lexical similarity could boost performance 

substantially.  Many of these features will be extracted from lexical resources 

such as WordNet. 

Additional lexical relatedness features that will be considered include the 

Jiang-Conrath distance, the Extended Lesk measure, and Latent Semantic 

Analysis.  The Jiang-Conrath distance measures the distance between words using 

Information Content; the distance between two words is the amount of 

information required to represent their commonality minus the information 

needed to describe both words (Jiang and Conrath 1997).  Budanitsky and Hirst 

(2006), as well as many other researchers, have found the Jiang-Conrath distance 

to be the best measure of semantic relatedness they tested in their evaluation 

framework (they did not test the Extended Lesk measure).  The Extended Lesk 

measure provides a measure of the overlap between the glosses of each word and 

between the glosses of their various relations such as hyponyms and hypernyms 

(Banerjee and Pedersen 2003).  Banerjee and Pedersen show a slight advantage to 

this metric in their evaluation framework.  These metrics are expected to be good 

measures of semantic relatedness and, therefore, good alignment metrics, but they 

are not expected to be useful in distinguishing entailing relations from 
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contradictory relations.  That is a desirable feature in this case, since we not only 

want to recognize entailments, but also contradictions.  For example, given the 

reference answer The pitch rises, if the learner says The pitch falls, we would like 

to consider falls to be a good alignment with rises.  At this stage in the processing 

we want to detect all potentially related terms and then, in a later stage, determine 

whether the dependency and propositional relationship is one of entailment, 

contradiction, or neither.   

In addition to the co-occurrence and lexical resource features, I will be 

generating collocation features to provide evidence for when two words can be 

used in similar contexts.  These features indicate the extent to which two words 

tend to co-occur with shared governors, modifiers, and other context words.   

The lexical metrics are utilized to sort the list of learner terms by 

relatedness to a given reference answer term and to filter out terms assumed to be 

unrelated due to a poor matching score.  Error analysis suggests that additional 

information be extracted from the system in order to analyze this alignment in 

more detail and, most likely, I should follow through on plans to split the task into 

two classification steps, first performing an alignment and then assessing the 

learner answer.   

The current feature set is really intended strictly to differentiate between 

those facets of the reference answer that the student most likely understands from 

those that were not addressed.  This leaves the approach prone to some of the 

same problems discussed earlier for LSA, (e.g., it does not explicitly distinguish 

antonyms from synonyms).  This must be addressed in future work, since despite 
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their somewhat infrequent occurrence, it is critical that the automated tutor 

recognize and address these contradictory beliefs as early as possible.  The most 

likely technique for recognizing antonyms is to use a broad coverage thesaurus.  

The system might also benefit from including versions of the PMI-IR metric that 

consider the context of the co-occurring terms and that are intended to 

differentiate contradictions (e.g., antonyms) from paraphrases and synonyms.   

One of my highest priority areas of future research is implementing a 

paraphrase detection module based on the work described in section 4.2.  This 

module will check whether there is evidence in a large corpus to suggest that 

based on lexical and dependency relations a phrase in the learner answer is a 

paraphrase of part of the reference answer.  However, the error analysis implies 

that existing paraphrase recognition techniques will at minimum require 

significant modification.   

Many of the learning algorithm’s features, both implemented and planned, 

rely on extracting statistics from large corpora.  Currently, these corpora are 

virtually all drawn from the news domain.  Since the vocabulary is quite different 

than that used in elementary school science, this undoubtedly has a significant 

negative effect on system performance.  Several additional, more relevant 

resources must be collected and indexed. 

The current feature set was largely constructed with domain-independent 

assessment in mind.  Several additional features could easily improve the 

accuracy of question-dependent assessment.  For example, simply adding unique 

question and facet identifiers would allow the learning algorithm to associate the 



  128 

relevance of specific feature values with individual contexts.  A related immediate 

area of research to improve results on the domain-independent Unseen Modules 

test set includes investigating techniques to avoid over-fitting the classifier to the 

same facet-specific characteristics we want to capitalize on above.   

Other short-term areas of research include coreference resolution and 

improving the dependency parser performance.  Coreference was one of the most 

frequent issues seen in the error analysis and has a potentially easy fix in selecting 

the alignment most consistent with the reference answer semantics.  While it was 

not as clear that dependency parser errors were directly causing assessment errors, 

several dependency paths looked suspect and I believe that less noisy features 

might allow the machine learning algorithm to detect patterns it is currently 

missing.  The primary initial effort here is simply in revising the current sentence 

segmentation. 

The current system relies on hand-generated reference answer facets.  To 

consider this a truly domain-independent approach, these facets must be extracted 

by an automated parser.  Further research is also required to determine what 

factors are most important in constructing reference answer facets and exactly 

how text should be restructured in order to facilitate this high-value facet 

extraction. 

When integrating this semantic assessment module in the eventual tutoring 

system, probabilistic reasoning should be used to decide whether and how to 

address apparent contradictions, misconceptions and unaddressed issues on the 

part of the student.  In the first experiment here, confidence weighted scores 
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approximately 10% (absolute) over the classification accuracy were achieved, 

indicating that the class probability estimates will be useful to the dialog manager 

in deciding how strongly to believe in the classifier’s output.  For example, if the 

classification suggests the learner understood a concept, but the confidence is low, 

the dialog manager could decide to paraphrase the answer as a transition to the 

next question, rather than assuming the learner definitely understands and simply 

moving on or rather than asking a confirming question about something the 

learner probably already expressed.  Additional research is necessary to achieve 

better probability estimates, but more importantly to decide exactly how to use 

these confidence measures within the dialog management. 

Of course the most important, and perhaps biggest, area of future research 

involves the integration of this assessment technology into the ITS.  There are 

both short-term research issues involving how to combine this system’s output 

with other assessment techniques and long term issues associated with utilizing 

the output to the best possible advantage in driving the tutoring dialog to optimize 

student learning gains. 
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15 Conclusions and Broader Impact 

The three most significant contributions of this work are 1) formally 

defining and evaluating a representation and learner answer classification scheme 

that involves the annotation of detailed answer facets with the fine-grained 

classifications necessary to enable more intelligent out-of-domain dialog control, 

2) laying the framework for a domain-independent answer assessment system that 

can classify learner responses to previously unseen questions according to this 

scheme, and 3) the creation of a public corpus of student answers annotated 

according to this method.  This work will facilitate the creation of an effective and 

scalable tutoring system that represents a significant advance over the state of the 

art.   

In chapters 6 through 9, I presented a case for the benefit of more detailed 

learner answer assessment than has been attempted in prior work.  I provided 

evidence for this benefit in the analysis of a number of specific learner answers 

and described a knowledge representation and annotation scheme that would 

support such an assessment.  The corpus of learner answers described here was 

annotated with substantial agreement (86.1%, Kappa = 0.728) and will be made 

publicly available for other researchers to utilize in improving their tutoring and 

educational assessment technologies.  There are currently no publicly available 

corpora of learner answers that researchers can utilize for these purposes.  This 

database of annotated answers provides a shared resource and a standardized 

annotation scheme allowing researchers to compare work and should stimulate 

further research in these areas.   
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This labeled corpus and the associated representation and annotation 

scheme is also expected to result in important advances in the state-of-the-art in 

textual semantic entailment.  This is essential in a wide variety of applications 

outside of intelligent tutoring systems, such as question answering (Harabagiu and 

Hickl 2006), information extraction, machine translation, machine reading, and 

many others.  Most current techniques as demonstrated by the Pascal Recognizing 

Textual Entailment challenges do not perform much above chance.   

In chapters 10 through 14, I presented an approach to automatically assess 

learner answers utilizing the novel representation and assessment scheme 

described in the first half of this thesis.  The results presented here for the Unseen 

Answers test set are 24.4% better than the majority class baseline and 19.4% 

better than a baseline derived from the best performing system at the first RTE 

challenge.  This demonstrates that the basic within-domain classification task is 

feasible and with more rigorous feature engineering, accuracy will easily be in a 

range that allows effective tutoring.  The out-of-domain results are 12.5% and 3% 

better than the most frequent class and lexical baselines respectively.  This 

represents reasonable performance for an initial domain-independent system – the 

first RTE systems all failed to outperform this same lexical baseline.   

Even when the prediction is not correct, as long as the tutor acts according 

to the confidence, the dialog can be effective.  Accurate probabilities will allow 

the dialog manager to decide whether to, for example, assume a misconception 

with high confidence and take appropriate corrective action or decide, due to low 

confidence, that it should clarify the learner’s understanding on a particular facet 
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of the question.  Prior work in the area of tutoring and answer verification has not 

explicitly addressed the benefits of probabilistic outputs.   

To my knowledge, this is the first work to demonstrate success in 

assessing roughly sentence-length constructed answers from elementary school 

children.  These are the kind of responses that might be expected in an inquiry-

based tutoring environment.  Improving reading and science comprehension in 

these formative years is critical in order to establish a foundation for later 

learning. 

All prior work on intelligent tutoring systems has focused on question-

specific assessment of answers and even then the understanding of learner 

responses has generally been restricted to a judgment regarding their correctness 

or, in a small number of cases, a classification that specifies which of a predefined 

set of misconceptions the learner might be exhibiting.  The domain-independent 

approach described here enables systems that can easily scale up to new content 

and learning environments, avoiding the need for lesson planners or technologists 

to create extensive new rules or classifiers for each new question the system must 

handle.  This is an obligatory first step in creating intelligent tutoring systems that 

can truly engage children in natural unrestricted dialog, such as is required to 

perform high quality student directed Socratic tutoring. 

This work represents an important prerequisite to achieving the goal of 

significantly increasing the learning gains effected by intelligent tutoring systems.  

I hope that the end result will stimulate additional research into the kind of 

individualized tutoring envisaged below by Bennet: 
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With intelligent tutors particularly, student knowledge will be dynamically 

modeled using cognitive and statistical approaches capable both of guiding 

instruction on a highly detailed level and of providing a general summary of 

overall standing. Instruction will be adapted not only to the multiple 

dimensions that characterize standing in a broad skill area, but to personal 

interests and background, allowing more meaningful accommodation to 

diversity than was possible with earlier approaches. 

Bennet, R. 1998, Reinventing Assessment: 

Speculations on the Future of Large-Scale Educational Testing 
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